Spring Ioc原始碼分析系列--Ioc原始碼入口分析
1. 概念
1)複數的定義
By definition, acomplex number is the combination of areal number and an imaginary number
A real number is also a complex number—it just has no imaginary part
2)複數的加減法--Addition and Subtraction of Complex Numbers
3)複數與標量的乘法--Multiplying a Complex Number by a Scalar
4)複數的叉乘--Product of Complex Numbers
5)複數的平方--Square of a Complex Number
6)複數的模—Norm/Modulus or Absolute value of a Complex Number
7)共軛複數--Complex Conjugate of a Complex Number
8)複數商--Quotient of Complex Numbers
9)複數的逆--Inverse of a Complex Number
10)單位虛數的平方根--Square-Root of ±i
2. 有序對錶示方法
1)提取出實部與虛部形成有序對
2)複數的加減法--Addition and Subtraction of Complex Numbers
4)複數的叉乘--Product of Complex Numbers
5)複數的平方--Square of a Complex Number
6)複數的模—Norm/Modulus or Absolute value of a Complex Number
7)共軛複數--Complex Conjugate of a Complex Number
8)複數商--Quotient of Complex Numbers
9)複數的逆--Inverse of a Complex Number
10)單位虛數的平方根--Square-Root of ±i
3. 矩陣表示方法
1)定義
2)複數的加減法--Addition and Subtraction of Complex Numbers
4)複數的叉乘--Product of Complex Numbers
5)複數的平方--Square of a Complex Number
6)複數的模—Norm/Modulus or Absolute value of a Complex Number
7)共軛複數--Complex Conjugate of a Complex Number
8)複數商--Quotient of Complex Numbers
9)複數的逆--Inverse of a Complex Number
10)單位虛數的平方根--Square-Root of ±i