1. 程式人生 > 其它 >Spring Ioc原始碼分析系列--Ioc原始碼入口分析

Spring Ioc原始碼分析系列--Ioc原始碼入口分析

1. 概念

1)複數的定義

By definition, acomplex number is the combination of areal number and an imaginary number

A real number is also a complex number—it just has no imaginary part



2)複數的加減法--Addition and Subtraction of Complex Numbers




3)複數與標量的乘法--Multiplying a Complex Number by a Scalar




4)複數的叉乘--Product of Complex Numbers



5)複數的平方--Square of a Complex Number




6)複數的模—Norm/Modulus or Absolute value of a Complex Number




7)共軛複數--Complex Conjugate of a Complex Number



8)複數商--Quotient of Complex Numbers



9)複數的逆--Inverse of a Complex Number



10)單位虛數的平方根--Square-Root of ±i


2. 有序對錶示方法

1)提取出實部與虛部形成有序對




2)複數的加減法--Addition and Subtraction of Complex Numbers




3)複數與標量的乘法--Multiplying a Complex Number by a Scalar




4)複數的叉乘--Product of Complex Numbers




5)複數的平方--Square of a Complex Number





6)複數的模—Norm/Modulus or Absolute value of a Complex Number




7)共軛複數--Complex Conjugate of a Complex Number




8)複數商--Quotient of Complex Numbers




9)複數的逆--Inverse of a Complex Number




10)單位虛數的平方根--Square-Root of ±i



3. 矩陣表示方法

1)定義


2)複數的加減法--Addition and Subtraction of Complex Numbers




3)複數與標量的乘法--Multiplying a Complex Number by a Scalar




4)複數的叉乘--Product of Complex Numbers




5)複數的平方--Square of a Complex Number





6)複數的模—Norm/Modulus or Absolute value of a Complex Number




7)共軛複數--Complex Conjugate of a Complex Number





8)複數商--Quotient of Complex Numbers




9)複數的逆--Inverse of a Complex Number




10)單位虛數的平方根--Square-Root of ±i