[CF620D]Professor GukiZ and Two Arrays
阿新 • • 發佈:2020-07-26
題目
題解
對於不交換和只交換一次這兩種情況,我們都可以直接暴力做,前者 \(\mathcal O(n)\) 輸入時預處理,後者直接 \(\mathcal O(nm)\) 暴力掃即可。
對於交換兩次,我們可以將陣列中任意兩個數綁在一起,分別組成 \(\frac{n^2}{2}\) 的陣列和 \(\frac{m^2}{2}\) 的陣列,然後在這兩個陣列中,將任意一個排序,在另一箇中列舉一個 \(x\),在有序陣列中二分尋找與 \(x\) 最接近的數,然後與答案進行比較即可。
程式碼
#include<cstdio> #include<algorithm> #include<utility> using namespace std; #define rep(i,__l,__r) for(signed i=(__l),i##_end_=(__r);i<=i##_end_;++i) #define fep(i,__l,__r) for(signed i=(__l),i##_end_=(__r);i>=i##_end_;--i) #define erep(i,u) for(signed i=tail[u],v=e[i].to;i;i=e[i].nxt,v=e[i].to) #define writc(a,b) fwrit(a),putchar(b) #define mp(a,b) make_pair(a,b) #define ft first #define sd second typedef long long LL; typedef pair<int,int> pii; typedef unsigned long long ull; typedef unsigned uint; #define Endl putchar('\n') // #define int long long // #define int unsigned // #define int unsigned long long #define cg (c=getchar()) template<class T>inline void read(T& x){ char c;bool f=0; while(cg<'0'||'9'<c)f|=(c=='-'); for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48)); if(f)x=-x; } template<class T>inline T read(const T sample){ T x=0;char c;bool f=0; while(cg<'0'||'9'<c)f|=(c=='-'); for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48)); return f?-x:x; } template<class T>void fwrit(const T x){//just short,int and long long if(x<0)return (void)(putchar('-'),fwrit(-x)); if(x>9)fwrit(x/10); putchar(x%10^48); } template<class T>inline T Max(const T x,const T y){return x>y?x:y;} template<class T>inline T Min(const T x,const T y){return x<y?x:y;} template<class T>inline T fab(const T x){return x>0?x:-x;} inline int gcd(const int a,const int b){return b?gcd(b,a%b):a;} inline void getInv(int inv[],const int lim,const int MOD){ inv[0]=inv[1]=1;for(int i=2;i<=lim;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD; } inline LL mulMod(const LL a,const LL b,const LL mod){//long long multiplie_mod return ((a*b-(LL)((long double)a/mod*b+1e-8)*mod)%mod+mod)%mod; } const int MAXN=2000; const int MAXM=2000; int a[MAXN+5],b[MAXN+5]; int n,m,hasswap; LL ans,suma,sumb; pair<int,int>swa1,swa2; int swacnt; inline void Init(){ n=read(1); rep(i,1,n)suma+=(a[i]=read(1)); m=read(1); rep(i,1,m)sumb+=(b[i]=read(1)); if(suma<sumb){ hasswap=true; swap(n,m);swap(suma,sumb); rep(i,1,Max(n,m))swap(a[i],b[i]); } ans=suma-sumb; } inline void Justone(){ LL tmpa,tmpb; rep(i,1,n)rep(j,1,m){ tmpa=suma-a[i]+b[j]; tmpb=sumb-b[j]+a[i]; if(fab(tmpa-tmpb)<ans){ ans=fab(tmpa-tmpb); swa1=mp(i,j); swacnt=1; } } } pair<int,pii>qa[MAXN*MAXN+5];int sza; pair<int,pii>qb[MAXM*MAXM+5];int szb; inline void update(const int i,const int j){ LL tmpa=suma-qa[i].first+qb[j].first; LL tmpb=sumb-qb[j].first+qa[i].first; if(fab(tmpa-tmpb)<ans){ ans=fab(tmpa-tmpb); swa1=mp(qa[i].second.first,qb[j].second.first); swa2=mp(qa[i].second.second,qb[j].second.second); swacnt=2; } } inline void Swaptwo(){ rep(i,1,n)rep(j,i+1,n) qa[++sza]=mp(a[i]+a[j],mp(i,j)); rep(i,1,m)rep(j,i+1,m) qb[++szb]=mp(b[i]+b[j],mp(i,j)); sort(qb+1,qb+szb+1); if(!sza || !szb)return; int l,r,mid; LL goal; rep(i,1,sza){ goal=0ll+qa[i].first-((suma-sumb)>>1); l=1,r=szb; while(l<r){ mid=l+r>>1; if(goal<qb[mid].first)r=mid; else l=mid+1; } update(i,l); if(l>1)update(i,l-1); } } inline void writAns(){ writc(ans,'\n'),writc(swacnt,'\n'); if(hasswap)swap(swa1.first,swa1.second),swap(swa2.first,swa2.second); if(swa1.first)writc(swa1.first,' '),writc(swa1.second,'\n'); if(swa2.first)writc(swa2.first,' '),writc(swa2.second,'\n'); } signed main(){ Init(); Justone(); Swaptwo(); writAns(); return 0; }