1. 程式人生 > 其它 >4.2.2 等差數列的前n項和公式

4.2.2 等差數列的前n項和公式

\({\color{Red}{歡迎到學科網下載資料學習 }}\)
[ 【基礎過關係列】高二數學同步精品講義與分層練習(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)

選擇性第二冊同步鞏固,難度2顆星!

基礎知識

前n項和

等差數列\(\{a_n \}\)的首項為\(a_1\),公差為\(d\),則其前\(n\)項和為
\(S_n=\dfrac{\left(a_1+a_n\right) n}{2}\)\(S_n=n a_1+\dfrac{n(n-1)}{2} d\)


解釋
(1)證明 \(S_n=a_1+a_2+⋯+a_{n-1}+a_n\) (1)
\(S_n=a_n+a_{n-1}+⋯+a_2+a_1\) (2)
兩式相加可得\(2S_n=(a_1+a_n)+(a_2+a_{n-1})+⋯+(a_{n-1}+a_2)+(a_n+a_1)\)
有等差數列的性質:若\(m+n=s+t\), 則\(a_m+a_n=a_s+a_t\)
可得\(2S_n=(a_1+a_n )+(a_1+a_n )+⋯+(a_1+a_n )+(a_1+a_n )=n(a_1+a_n)\)
\(S_n=\dfrac{\left(a_1+a_n\right) n}{2}\)

\(a_n=a_1+{n-1}d\)
所以\(S_n=\dfrac{\left[a_1+a_1+(n-1) d\right] n}{2}=\dfrac{2 n a_1+n(n-1) d}{2}=n a_1+\dfrac{n(n-1)}{2} d\).
以上方法是倒序相加法.
(2)等邊數列的前\(n\)項和\(S_n=n a_1+\dfrac{n(n-1)}{2} d\),可寫成 \(S_n=\dfrac{d}{2} n^2+\left(a_1-\dfrac{d}{2}\right) n\)
\(d≠0\)時,\(S_n\)可看成關於\(n\)的二次函式.

【例】 等差數列\(\{a_n \}\)

中,\(a_n=2n-1\),則其前\(n\)項和\(S_n=\) \(\underline{\quad \quad}\).
解析 \(S_n=\dfrac{\left(a_1+a_n\right) n}{2}=\dfrac{(1+2 n-1) n}{2}=n^2\);或\(∵a_1=1\)\(d=2\)\(\therefore S_n=n a_1+\dfrac{n(n-1)}{2} d=n^2\).
 

證明一個數列是等差數列的方法

① 定義法: \(a_{n+1}-a_n=d\)\((d\)是常數,\(n∈N^*)\)\(⟹a_n\)是等差數列;
② 中項法: \(2a_{n+1}=a_n+a_{n+2} (n∈N^*)⟹a_n\)是等差數列;
③ 通項公式法:\(a_n=kn+b\)\((k ,b\)是常數\() ⟹a_n\)是等差數列;
④ 前n項和公式法: \(S_n=A n^2+Bn\)\((A ,B\)是常數\() ⟹a_n\)是等差數列;
方法③④不可以在解答題裡直接使用.
 

基本性質

若數列\(\{a_n\}\)是首項為\(a_1\),公差為\(d\)的等差數列,前\(n\)項和為\(S_n\),它具有以下性質:
(1) \(S_n\) , \(S_{2 n}-S_n\), \(S_{3 n}-S_{2 n}…\)\((n∈N^*)\)成等差數列;
證明 \(S_{2 n}-S_n=a_{n+1}+a_{n+2}+\cdots+a_{2 n-1}+a_{2 n}\)
\(=\left(a_1+n d\right)+\left(a_2+n d\right)+\cdots+\left(a_{n-1}+n d\right)+\left(a_n+n d\right)=S_n+n^2 d\)
\(S_{2 n}-S_n-S_n=n^2 d\)
同理 \(S_{3 n}-S_{2 n}=S_{2 n}-S_n+n^2 d \Rightarrow S_{3 n}-S_{2 n}-\left(S_{2 n}-S_n\right)=n^2 d\)
\(S_{4 n}-S_{3 n}-\left(S_{3 n}-S_{2 n}\right)=n^2 d…\) 歸納得證.
【例】 \(S_n\)是一等差數列的前\(n\)項和,\(S_3\) ,\(S_6-S_3\) ,\(S_9-S_6\)成等差數列.
(2) \(S_{2 n-1}=(2 n-1) a_n\).
證明 \(S_{2 n-1}=\dfrac{(2 n-1)\left(a_1+a_{2 n-1}\right)}{2}=(2 n-1) \cdot \dfrac{a_1+a_{2 n-1}}{2}=(2 n-1) a_n\).
【例】 \(S_n\)是一等差數列的前\(n\)項和,\(S_7=7a_4\)\(S_{11}=11a_6\).
 

基本方法

【題型1】 等差數列前n項和的基本運算

【典題1】 \(S_n\)為等差數列\(\{a_n\}\)的前\(n\)項和,若\(a_4+a_5=24\)\(S_6=48\),則\(S_9=\) \(\underline{\quad \quad}\).
解析 設等差數列\(\{a_n\}\)的公差為\(d\)\(\because a_4+a_5=24\)\(S_6=48\)
\(\therefore\left\{\begin{array}{c} 2 a_1+7 d=24 \\ 6 a_1+\dfrac{6 \times 5}{2} d=48 \end{array}\right.\),解得\(a_1=-2\),\(d=4\)
\(\therefore S_9=9 a_1+\dfrac{9 \times 8}{2} d=-18+144=126\).
點撥 本題屬於基本量法,\(a_1\),\(d\)是等差數列基本量,遇到\(a_n\)用上\(a_n=a_1+(n-1)d\)
\(S_n\)用上 \(S_n=n a_1+\dfrac{n(n-1)}{2} d\).
 

【典題2】 數列\(\{a_n \}\)是等差數列,\(a_1=50\)\(d=-0.6\).
  (1)該數列前多少項都是非負數?(2)求此數列的前\(n\)項和\(S_n\)的最大值.
解析 (1)由\(a_1=50\)\(d=-0.6\)
\(a_n=50-0.6(n-1)=-0.6n+50.6\).
\(\left\{\begin{array}{l} a_m \geq 0 \\ a_{m+1}<0 \end{array}\right.\),即 \(\left\{\begin{array}{l} -0.6 m+50.6 \geq 0 \\ -0.6(m+1)+50.6<0 \end{array}\right.\),解得 \(\dfrac{250}{3}<m \leq \dfrac{253}{3}\)
\(m∈N^*\),則\(m=84\)
即前\(84\)項都是非負數.
(2)方法1 由(1)得\(a_{84}>0\),\(a_{85}<0\)
\(S_n\)的最大值是 \(S_{84}=50 \times 84+\dfrac{84 \times 83}{2} \times(-0.6)=2108.4\).
方法2 \(S_n=50 n+\dfrac{n(n-1)}{2} \cdot(-0.6)=-0.3 n^2+50.3 n\)\(=-0.3\left(n-\dfrac{503}{6}\right)^2+\dfrac{503^2}{120}\)
由二次函式的性質知,當\(n=84\)時,\(S_n\)取最大值\(S_{84}=2108.4\).
點撥 求等差數列前n項和\(S_n\)的最值,顯然當等差數列遞減,\(S_n\)有最大值,可確定哪項開始為負值,便可知道最大值;當等差數列遞增,\(S_n\)有最小值,可確定哪項開始為正值,便可知道最小值;方法2是求出\(S_n\)的解析式,再利用二次函式的性質求最值.
 

【典題3】 等差數列\(\{a_n\}\)中,\(a_1=2020\),前\(n\)項和為\(S_n\),若 \(\dfrac{S_{12}}{12}-\dfrac{S_{10}}{10}=-2\),則\(S_{2022}=\) \(\underline{\quad \quad}\) .
解析 由等差數列前\(n\)項和為 \(S_n=n a_1+\dfrac{n(n-1)}{2} d\)
\(\dfrac{S_n}{n}=a_1+\dfrac{(n-1)}{2} d=-\dfrac{d}{2} n+a_1\),顯然 \(\left\{\dfrac{S_n}{n}\right\}\)為等差數列,
\(\left\{\dfrac{S_n}{n}\right\}\)公差為\(d_1\)
\(\because a_1=2020\)\(\therefore \dfrac{S_1}{1}=\dfrac{a_1}{1}=2020\)
\(\because \dfrac{S_{12}}{12}-\dfrac{S_{10}}{10}=2 d_1=-2\)\(\therefore d_1=-1\)
\(\therefore \dfrac{s_{2022}}{2022}=2020+2021 \times(-1)=-1\),解得\(S_{2022}=-2022\)
點撥 等差數列中,前\(n\)項和為\(S_n\),則\(\left\{\dfrac{S_n}{n}\right\}\)為等差數列.
 

【鞏固練習】

1.已知\(\{a_n\}\)為等差數列,若\(a_3=1\),\(S_4=0\),則\(a_6\)的值為(  )
 A.\(6\) \(\qquad \qquad \qquad \qquad\) B.\(7\) \(\qquad \qquad \qquad \qquad\) C.\(8\) \(\qquad \qquad \qquad \qquad\) D.\(9\)
 

2.(多選)設數列\(\{a_n\}\)是等差數列,\(S_n\)是其前\(n\)項和,\(a_1>0\)\(S_6=S_9\),則(  )
 A.\(d>0\) \(\qquad \qquad \qquad \qquad\) B.\(a_8=0\) \(\qquad \qquad \qquad \qquad\) C.\(S_7\)\(S_8\)\(S_n\)的最大值 \(\qquad \qquad \qquad \qquad\) D.\(S_5>S_6\)
 

3.已知在等差數列\(\{a_n\}\)中,\(a_3=12\)\(S_{12} S_{13}<0\),則\(S_n\)最大時\(n=\) \(\underline{\quad \quad}\)
 

參考答案

  1. 答案 \(B\)
    解析 設等差數列\(\{a_n\}\)的公差為\(d\)
    \(\left\{\begin{array}{l} a_3=1 \\ S_4=0 \end{array}\right.\),得 \(\left\{\begin{array}{l} a_1+2 d=1 \\ 4 a_1+6 d=0 \end{array}\right.\),解得 \(\left\{\begin{array}{l} a_1=-3 \\ d=2 \end{array}\right.\)
    所以\(a_6=-3+2×5=7\)
    故選:\(B\)

  2. 答案 \(BC\)
    解析 \(a_1>0\)\(S_6=S_9\)
    \(\therefore 6 a_1+\dfrac{6 \times 5}{2} d=9 a_1+\dfrac{9 \times 8}{2} d\),化為:\(a_1+7d=0\)
    可得\(a_8=0\),\(d<0\)
    \(S_7\)\(S_8\)\(S_n\)的最大值,\(S_5<S_6\)
    故選:\(BC\)

  3. 答案 \(6\)
    解析 設等差數列\(\{a_n\}\)的公差為\(d\)\(\because a_3=12\)\(S_{12} S_{13}<0\)
    \(\therefore a_1+2d=12\)\(\left(12 a_1+\dfrac{12 \times 11}{2} d\right)\left(13 a_1+\dfrac{13 \times 12}{2} d\right)<0\)
    化為: \((d+3)\left(d+\dfrac{24}{7}\right)<0\)
    解得\(-\dfrac{24}{7}<d<-3\),可得:\(\dfrac{7}{2}<-\dfrac{12}{d}<4\)
    因此等差數列\(\{a_n\}\)單調遞減,
    \(\therefore S_{12}>0\),\(S_{13}<0\)
    \(a_n=a_1+(n-1)d=12-2d+(n-1)d=12+(n-3)d≥0\)
    可得 \(n \leq 3-\dfrac{12}{d}\)
    \(\because \dfrac{13}{2} \leq 3-\dfrac{12}{d} \leq 7\)\(\therefore n≤6\)
    \(S_n\)最大時\(n=6\)
     

【題型2】等差數列前n項和的性質

【典題1】 已知兩個等差數列\(\{a_n \}\)\(\{b_n \}\),它們的前\(n\)項和分別記為\(S_n\),\(T_n\),若 \(\dfrac{S_n}{T_n}=\dfrac{n+3}{n+1}\),求 \(\dfrac{a_{10}}{b_{10}}\) .
解析 在等差數列\(\{a_n \}\)\(\{b_n \}\)\(\because \dfrac{S_{19}}{T_{19}}=\dfrac{19 a_{10}}{19 b_{10}}=\dfrac{a_{10}}{b_{10}}\)
\(\therefore \dfrac{a_{10}}{b_{10}}=\dfrac{S_{19}}{T_{19}}=\dfrac{19+3}{19+1}=\dfrac{11}{10}\).
點撥 性質 \(S_{2 n-1}=(2 n-1) a_n\)的運用.

【典題2】 一個等差數列的前\(n\)項和為\(S_n\)\(S_{10}=100\)\(S_{100}=10\),求\(S_{110}\)
解析 方法1 設等差數列\(\{a_n \}\)的公差為\(d\),前\(n\)項和為\(S_n\)
\(S_n=n a_1+\dfrac{n(n-1)}{2} d\).
由已知,得 \(\left\{\begin{array}{l} 10 a_1+\dfrac{10 \times 9}{2} d=100 \\ 100 a_1+\dfrac{100 \times 99}{2} d=10 \end{array}\right.\),解得 \(d=-\dfrac{11}{50}\)\(a_1=\dfrac{1099}{100}\)
\(S_{110}=110 a_1+\dfrac{110 \times 109}{2} d=110 \times \dfrac{1099}{100}+\dfrac{110 \times 109}{2} \times\left(-\dfrac{11}{50}\right)\)\(=110 \times\left(\dfrac{1099-109 \times 11}{100}\right)=-110\).
故此數列的前\(110\)項之和為\(-110\).
方法2 設此等差數列的前\(n\)項和為\(S_n=an^2+bn\).
\(\because S_{10}=100\), \(S_{100}=10\)
\(\therefore\left\{\begin{array}{l} 10^2 a+10 b=100 \\ 100^2 a+100 b=10 \end{array}\right.\),解得 \(\left\{\begin{array}{l} a=-\dfrac{11}{100} \\ b=\dfrac{111}{10} \end{array}\right.\)
\(\therefore S_n=-\dfrac{11}{100} n^2+\dfrac{111}{10} n\).
\(\therefore S_{110}=-\dfrac{11}{100} \times 110^2+\dfrac{111}{10} \times 110=-110\).
方法3 數列 \(S_{10}, S_{20}-S_{10}, S_{30}-S_{20}, \ldots, S_{100}-S_{90}, S_{110}-S_{100}\)成等差數列.
設其公差為\(D\),則前\(10\)項的和為 \(10 S_{10}+\dfrac{10 \times 9}{2} \cdot D=S_{100}=10\),解得\(D=-22\)
\(\therefore S_{110}-S_{100}=S_{10}+(11-1) D=100+10 \times(-22)=-120\).
\(\therefore S_{110}=-120+S_{100}=-110\).
方法4 \(\because S_{100}-S_{10}=a_{11}+a_{12}+\cdots+a_{100}=\dfrac{90\left(a_{11}+a_{100}\right)}{2}=\dfrac{90\left(a_1+a_{110}\right)}{2}\)
\(S_{100}-S_{10}=10-100=-90\)\(\therefore a_1+a_{110}=-2\).
\(\therefore S_{110}=\dfrac{110\left(a_1+a_{110}\right)}{2}=-110\).
點撥 注意比較各種方法的優劣,掌握等差數列的基本性質.
 

【鞏固練習】

1.等差數列\(\{a_n\}\)的前\(n\)項和為\(S_n\),若\(a_2+a_8+a_{11}=60\),則\(S_{13}\)的值是(  )
 A.\(130\) \(\qquad \qquad \qquad \qquad\) B.\(260\) \(\qquad \qquad \qquad \qquad\) C.\(390\) \(\qquad \qquad \qquad \qquad\) D.\(520\)
 

2.已知數列\(\{a_n\}\)為等差數列,\(S_n\)為其前\(n項\)和,\(2+a_5=a_6+a_3\),則\(S_7=\)(  )
 A.\(2\) \(\qquad \qquad \qquad \qquad\) B.\(7\) \(\qquad \qquad \qquad \qquad\) C.\(14\) \(\qquad \qquad \qquad \qquad\) D.\(28\)
 

3.已知等差數列\(\{a_n\}\)的前\(n\)項和為\(S_n\),\(S_4=3\),\(S_{n-4}=12(n≥5,n∈N^*)\),\(S_n=17\),則\(n\)的值為(  )
 A.\(8\) \(\qquad \qquad \qquad \qquad\) B.\(11\) \(\qquad \qquad \qquad \qquad\) C.\(13\) \(\qquad \qquad \qquad \qquad\) D.\(17\)
 

4.等差數列\(\{a_n\}\)\(\{b_n\}\)的前\(n\)項和分別為\(S_n\),\(T_n\) ,若\(\dfrac{S_n}{T_n}=\dfrac{2 n}{3 n+1}\),則 \(\dfrac{a_n}{b_n}=\)( )
 A. \(\dfrac{2}{3}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{2 n-1}{3 n-1}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{2 n+1}{3 n+1}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{2 n-1}{3 n+4}\)
 

5.設\(S_n\)是等差數列\(\{a_n\}\)的前n項和,若 \(\dfrac{S_3}{S_6}=\dfrac{1}{3}\),則\(\dfrac{S_6}{S_{12}}=\)( )
 A. \(\dfrac{3}{10}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{1}{3}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{1}{8}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{9}\)
 

參考答案

  1. 答案 \(B\)
    解析 設等差數列\(\{a_n\}\)的公差為\(d\)
    \(\because a_2+a_8+a_{11}=60\)
    \(\therefore a_1+d+a_1+7d+a_1+10d=3(a_1+6d)=3a_7=60\),解得\(a_7=20\)
    \(\therefore S_{13}=\dfrac{13\left(a_1+a_{13}\right)}{2}=13 a_7=13 \times 20=260\)
    故選:\(B\)

  2. 答案 \(C\)
    解析 \(\because 2+a_5=a_6+a_3\)\(\therefore a_4=a_6+a_3-a_5=2\)
    \(S_7=\dfrac{7\left(a_1+a_7\right)}{2}=7 a_4=14\).故選:\(C\)

  3. 答案 \(D\)
    解析 由題意可得,\(S_4=a_1+a_2+a_3+a_4=3\) ①,
    \(\because S_{n-4}=12\)\(S_n=17\)
    \(\therefore a_{n-3}+a_{n-2}+a_{n-1}+a_n=17-12=5\)②,
    ①+②可得, \(\left(a_1+a_n\right)+\left(a_2+a_{n-1}\right)+\left(a_3+a_{n-2}\right)+\left(a_4+a_{n-3}\right)=8\),
    \(\therefore a_1+a_n=2\)
    \(\because S_n=17\)\(\therefore S_n=\dfrac{n\left(a_1+a_n\right)}{2}=17\),解得\(n=17\)
    故選:\(D\)

  4. 答案 \(B\)
    解析 \(\dfrac{a_n}{b_n}=\dfrac{2 a_n}{2 b_n}=\dfrac{a_1+a_{2 n-1}}{b_1+b_{2 n-1}}=\dfrac{\dfrac{1}{2}(2 n-1)\left(a_1+a_{2 n-1}\right)}{\dfrac{1}{2}(2 n-1)\left(b_1+b_{2 n-1}\right)}\)\(=\dfrac{S_{2 n-1}}{T_{2 n-1}}=\dfrac{2(2 n-1)}{3(2 n-1)+1}=\dfrac{2 n-1}{3 n-1}\),故選\(B\).

  5. 答案 \(A\)
    解析 方法一 \(\because \dfrac{S_3}{S_6}=\dfrac{1}{3}\)\(\therefore \dfrac{3 a_1+3 d}{6 a_1+15 d}=\dfrac{1}{3}\),化簡得\(a_1=2d\)
    \(\therefore \dfrac{S_6}{S_{12}}=\dfrac{6 a_1+15 d}{12 a_1+66 d}=\dfrac{27 d}{90 d}=\dfrac{3}{10}\).故選\(A\).
    方法二 \(\because \dfrac{S_3}{S_6}=\dfrac{1}{3}\),令\(S_3=1\), \(S_6=3\)
    \(\because S_3, S_6-S_3, S_9-S_6, S_{12}-S_9\)成等差數列,
    \(\therefore 1,2,S_9-3,S_{12}-S_9\)成等差數列,
    顯然這等差數列公差為\(1\),所以\(S_9-3=3\),\(S_{12}-S_9=4\)
    解得\(S_{12}=10\)\(\therefore \dfrac{S_6}{S_{12}}=\dfrac{3}{10}\),故選\(A\).
     

【題型2】 等差數列前n項和的綜合

【典題1】 已知等差數列\(\{a_n\}\)滿足:\(a_1=2\),\(a_5=18\)
  (1)求數列\(\{a_n\}\)的通項公式;
  (2)記\(S_n\)為數列\(\{a_n\}\)的前n項和,求正整數\(n\)的範圍,使得\(S_n>60n+800\)
解析 (1)設等差數列\(\{a_n\}\)的公差為\(d\)
\(4d=a_5-a_1=18-2=16\),解得\(d=4\)
\(a_n=a_1+{n-1}d=2+4{n-1}=4n-2\)
(2) \(S_n=\dfrac{n[2+(4 n-2)]}{2}=2 n^2\)
\(2n^2>60n+800\),即\(n^2-30n-400>0\),解得\(n>40\)\(n<-10\)(捨去),
故存在正整數\(n\),使得\(S_n>60n+800\)成立,\(n\)的最小值為\(41\)
 

【典題2】 某長江抗洪指揮部接到預報,\(24\)小時後有一洪峰到達.為確保安全,指揮部決定在洪峰來臨前築一道堤壩作為第二道防線.經計算,除現有的部隊指戰員和當地幹部群眾連續奮戰外,還需用\(20\)臺同型號的翻斗車,平均每輛車要工作\(24\)小時才能完成任務.但目前只有一輛車投入施工,其餘的需從附近高速公路上抽調,每隔\(20\)分能有一輛車到達,且指揮部最多還可調集\(24\)輛車,那麼在\(24\)時內能否構築成第二道防線?
解析 設第\(n\)輛車工作的時間是\(a_n\)小時,
則有\(a_n-a_{n+1}=\dfrac{20}{60}=\dfrac{1}{3}\) (小時),
所以數列\(\{a_n\}\)是等差數列,公差 \(d=-\dfrac{1}{3}\),\(a_1=24\).
如果把所有的\(25\)輛車全部抽調到位,所用的時間是 \(\dfrac{20}{60} \times 24=8\) (小時)\(<24\)小時,
則這\(25\)輛車可以完成的工作量為
\(S_{25}=a_1+a_2+\cdots+a_{25}=25 a_1+\dfrac{25 \times(25-1)}{2} d\)
\(=25 \times 24+\dfrac{25 \times 24}{2} \times\left(-\dfrac{1}{3}\right)=500\)(小時).
總共需要完成的工作量為\(24×20=480\)(小時).
由於\(500>480\)
所以,在\(24\)小時內能構築成第二道防線.
 

【鞏固練習】

1.某景區三絕之一的鐵旗杆鑄於道光元年,兩根分別立於人口兩側,每根重約\(12000\)斤,旗杆分五節,每節分鑄八卦龍等圖案,每根杆,上還懸掛\(24\)只玲瓏的鐵風鈴.已知每節長度約成等差數列,第一節長約\(12\)尺,總長約\(48\)尺,則第五節長約為幾尺(  )
 A.\(7\) \(\qquad \qquad \qquad \qquad\) B.\(7.2\) \(\qquad \qquad \qquad \qquad\) C.\(7.6\) \(\qquad \qquad \qquad \qquad\) D.\(8\)
 

2.公差不為零的等差數列\(\{a_n\}\)滿足\(a_3=a_5 a_8\)\(a_6=1\)
  (1)求\(\{a_n\}\)的通項公式;
  (2)記\(\{a_n\}\)的前n項和為\(S_n\),求使\(S_n<a_n\)成立的最大正整數\(n\)
 
 

3.在正項等差數列\(\{a_n \}\)中,其前\(n\)項和為\(S_n\)\(a_2+a_3=12\)\(a_2⋅a_3=S_5\)
  (1)求\(a_n\)
  (2)證明: \(\dfrac{1}{3} \leq \dfrac{1}{S_1}+\dfrac{1}{S_2}+\cdots+\dfrac{1}{S_n}<\dfrac{3}{4}\)
 
 

參考答案

  1. 答案 \(B\)
    解析 設每旗杆節長度成等差數列\(\{a_n\}\),其公差為\(d\)
    由題意 \(\left\{\begin{array}{l} a_1=12 \\ S_5=5 a_1+10 d=48 \end{array}\right.\),則\(60+10d=48\),即\(d=-1.2\)
    所以\(a_5=a_1+4d=12+4×(-1.2)=7.2\)
    所以第五節長為\(7.2\)尺.
    故選:\(B\)

  2. 答案 (1) \(a_n=2n-11(n∈N^* )\); (2)\(10\).
    解析 (1)設等差數列\(\{a_n\}\)的公差為\(d(d≠0)\)
    \(a_3=a_5 a_8\),\(a_6=1\),得\(1-3d=(1-d)(1+2d)\)
    \(2d^2-4d=0\),解得\(d=2\),或\(d=0\)(捨去),
    \(a_1=a_6-5d=1-10=-9\)
    所以\(a_n=-9+2(n-1)=2n-11(n∈N^* )\)
    (2)由(1)可知 \(S_n=\dfrac{n}{2}\left(a_1+a_n\right)=\dfrac{n}{2}(-9+2 n-11)=n^2-10 n\)
    \(S_n<a_n\),得\(n^2-10n<2n-11\)
    \(n^2-12n+11<0\),解得\(1<n<11\)
    \(n∈N^*\)
    故使\(S_n<a_n\)成立的最大正整數\(n\)\(10\)

  3. 答案 (1) \(a_n=2n+1\);(2)略.
    解析 (1) \(\because \left\{\begin{array}{l} a_2+a_3=12 \\ a_2 \cdot a_3=S_5=5 a_3 \end{array}\right.\)
    \(\left\{\begin{array}{l} a_2=a_1+d=5 \\ a_3=a_1+2 d=7 \end{array}\right.\),解得\(a_1=3\)\(d=2\)
    \(\therefore a_n=2n+1\)
    證明:(2)\(S_n=n(n+2)\)\(\dfrac{1}{S_n}=\dfrac{1}{n(n+2)}=\dfrac{1}{2}\left(\dfrac{1}{n}-\dfrac{1}{n+2}\right)\)
    \(\therefore \dfrac{1}{S_1}+\dfrac{1}{S_2}+\cdots+\dfrac{1}{S_n}=\dfrac{1}{2}\left(1+\dfrac{1}{2}+\cdots \ldots-\dfrac{1}{n+1}-\dfrac{1}{n+2}\right)<\dfrac{3}{4}\)
    \(n=1\)時,取最大值\(\dfrac{1}{3}\)
    綜上: \(\dfrac{1}{3} \leq \dfrac{1}{S_1}+\dfrac{1}{S_2}+\cdots+\dfrac{1}{S_n}<\dfrac{3}{4}\)
     

分層練習

【A組---基礎題】

1.等差數列\(\{a_n \}\)的公差\(d=2\)\(a_1=1\),則(  )
 A.\(a_n=2n,S_n=n^2\) \(\qquad \qquad \qquad \qquad\) B.\(a_n=n,S_n=n^2+n\) \(\qquad \qquad \qquad \qquad\)
C.\(a_n=2n-1,S_n=n^2\) \(\qquad \qquad \qquad \qquad\) D.\(a_n=2n-1,S_n=n^2-n\)
 

2.在等差數列\(\{a_n\}\)\(a_{10}=2a_8-2\),則數列\(\{a_n\}\)的前\(11\)項的和\(S_{11}=\)(  )
 A.\(8\) \(\qquad \qquad \qquad \qquad\) B.\(16\) \(\qquad \qquad \qquad \qquad\) C.\(22\) \(\qquad \qquad \qquad \qquad\) D.\(44\)
 

3.等差數列\(\{a_n\}\)的通項公式\(a_n=2n+1\)其前\(n\)項和為\(S_n\),則數列\(\left\{\dfrac{S_n}{n}\right\}\)\(10\)項的和為( )
 A.\(120\) \(\qquad \qquad \qquad \qquad\) B.\(70\) \(\qquad \qquad \qquad \qquad\) C.\(75\) \(\qquad \qquad \qquad \qquad\) D.\(100\)
 

4.已知等差數列\(\{a_n\}\)的前\(n\)項和為\(S_n\)\(S_4=40\)\(S_n=210\)\(S_{n-4}=130\),則\(n=\)(  )
 A.\(12\) \(\qquad \qquad \qquad \qquad\) B.\(14\) \(\qquad \qquad \qquad \qquad\) C.\(16\) \(\qquad \qquad \qquad \qquad\) D.\(18\)
 

5.中國古詩詞中,有一道“八子分綿”的數學名題:“九百九十六斤綿,贈分八子作盤纏,次第每人多十七,要將第八數來言”.題意是:把\(996\)斤綿分給\(8\)個兒子作盤纏,按照年齡從大到小的順序依次分綿,年齡小的比年齡大的多\(17\)斤綿,那麼第\(8\)個兒子分到的綿是(  )
 A.\(201\)\(\qquad \qquad \qquad \qquad\) B.\(191\)\(\qquad \qquad \qquad \qquad\) C.\(184\)\(\qquad \qquad \qquad \qquad\) D.\(174\)
 

6.(多選)等差數列\(\{a_n\}\)的前n項和為\(S_n\)\(a_1+5a_3=S_8\),則下列結論一定正確的是(  )
 A.\(a_{10}=0\) \(\qquad \qquad \qquad \qquad\) B.當\(n=9\)\(10\)時,\(S_n\)取最大值 \(\qquad \qquad \qquad \qquad\)
C.\(|a_9 |<|a_{11}|\) \(\qquad \qquad \qquad \qquad\) D.\(S_6=S_{13}\)
 

7.已知等差數列\(\{a_n\}\)的前n項和為\(S_n\),若 \(S_{10}=110\)\(S_{110}=10\),則 \(S_{120}=\) \(\underline{\quad \quad}\).
 

8.設等差數列\(\{a_n\}\)的前n項和為\(S_n\),若\(a_6=6\),\(S_{15}=15\),則公差\(d=\) \(\underline{\quad \quad}\)
 

9.已知等差數列\(\{a_n\}\)的公差\(d>0\)\(a_2=-11\)\(a_5^2-a_{10}^2=0\),則\(S_{15}=\) \(\underline{\quad \quad}\)
 

10.記\(S_n\)為等差數列\(\{a_n\}\)的前\(n\)項和,已知\(a_1=-3\)\(S_4=0\)
  (1)求\(\{a_n \}\)的通項公式\(a_n\)\(S_n\)
  (2)求\(a_2+a_4+⋯+a_8+a_{10}+a_{12}\)的值.
 
 

11.已知\(S_n\)為等差數列\(\{a_n \}\)的前\(n\)項和,已知\(S_2=2\)\(S_3=-6\)
  (1)求數列\(\{a_n \}\)的通項公式和前\(n\)項和\(S_n\)
  (2)是否存在\(n\),使\(S_n\)\(S_{n+2}+2n\)\(S_{n+3}\)成等差數列,若存在,求出\(n\),若不存在,說明理由.
 
 

參考答案

  1. 答案 \(C\)

  2. 答案 \(C\)
    解析 在等差數列\(\{a_n\}\)中,由\(a_10=2a_8-2\),得\(a_1+9d=2a_1+14d-2\)
    可得\(a_1+5d=a_6=2\)\(\therefore S_{11}=11a_6=22\)
    故選:\(C\)

  3. 答案 \(C\)
    解析 \(\because a_n=2n+1\), \(\therefore S_n=\dfrac{n\left(a_1+a_n\right)}{2}=n^2+2 n\) ,
    \(\therefore \dfrac{S_n}{n}=n+2\)
    所以數列\(\left\{\dfrac{S_n}{n}\right\}\)也是等差數列,且通項公式為\(n+2\)
    則首項為\(3\),第\(10\)項為\(12\)
    所以前\(10\)項的和 \(\dfrac{10(3+12)}{2}=75\).

  4. 答案 \(B\)
    解析 因為\(S_4=40\),所以\(a_1+a_2+a_3+a_4=40\)
    因為 \(S_n-S_{n-4}=80\),所以 \(a_n+a_{n-1}+a_{n-2}+a_{n-3}=80\)
    所以根據等差數列的性質可得:\(4(a_1+a_n)=120\),即\(a_1+a_n=30\)
    由等差數列的前n項和的公式可得: \(S_n=\dfrac{n\left(a_1+a_n\right)}{2}\),並且\(S_n=210\)
    所以解得\(n=14\)
    故選:\(B\)

  5. 答案 \(C\)
    解析\(a_1,a_2,...,a_8\)是表示\(8\)個兒子按照年齡從大到小得到的綿數,
    由題意得數列\(a_1,a_2,...,a_8\)是公差為\(17\)的等差數列,且這\(8\)項的和為\(996\)
    \(\therefore 8 a_1+\dfrac{8 \times 7}{2} \times 17=996\),解得\(a_1=65\)
    \(\therefore a_8=65+7×17=184\)
    \(\therefore\)\(8\)個兒子分到的綿是\(184\)斤.
    故選:\(C\)

  6. 答案 \(AD\)
    解析 \(\because\) 等差數列\(\{a_n\}\)的前\(n\)項和為\(S_n\)\(a_1+5a_3=S_8\)
    \(\therefore a_1+5\left(a_1+2 d\right)=8 a_1+\dfrac{8 \times 7}{2} d\),求得\(a_1=-9d\)
    \(a_10=a_1+9d=0\),故\(A\)正確;
    該數列的前\(n\)項和 \(S_n=n a_1+\dfrac{n(n-1)}{2} d=\dfrac{n^2}{2}-d-\dfrac{19}{2} d n\)
    它的最值,還跟\(d\)的值有關,
    不能推出當\(n=9\)\(10\)時,\(S_n\)取最大值,故\(B\)錯誤.
    \(\because |a_9 |=|a_1+8d|=|-d|=|d|\),\(|a_{11} |=|a_1+10d|=|d|\)
    故有\(|a_9 |=|a_{11}|\),故\(C\)錯誤;
    由於 \(S_6=6 a_1+\dfrac{6 \times 5}{2} d=-39 d\), \(S_{13}=13 a_1+\dfrac{13 \times 12}{2} d=-39 d\)
    \(S_6=S_{13}\),故\(D\)正確,
    故選:\(AD\)

  7. 答案 \(-120\)
    解析\(b_n=\dfrac{s_n}{n} \text {, }\)
    \(\because \{a_n\}\)是等差數列,\(\therefore \{b_n\}\)也是等差數列,設其公差為\(d\)
    \(b_{10}=\dfrac{S_{10}}{10}=11\)\(b_{110}=\dfrac{S_{110}}{110}=\dfrac{10}{110}=\dfrac{1}{11}\)
    \(\therefore 100 d=b_{110}-b_{10}=\dfrac{1}{11}-11=-\dfrac{120}{11}\),解得 \(d=-\dfrac{6}{55}\)
    \(\therefore b_{120}=b_{110}+10 d=\dfrac{1}{11}-\dfrac{6}{55} \times 10=-1\)
    \(\therefore \dfrac{S_{120}}{120}=-1\),即 \(S_{120}=-120\)

  8. 答案 \(-\dfrac{5}{2}\)
    解析 \(\because a_6=6\),\(S_{15}=15\)
    \(\therefore a_1+5d=6\), \(15 a_1+\dfrac{15 \times 14}{2} d=15\)\(\therefore d=-\dfrac{5}{2}\)

  9. 答案 \(15\)
    解析 等差數列\(\{a_n\}\)的公差\(d>0\)\(a_2=-11\)\(a_5^2-a_{10}^2=0\)
    \(\therefore a_5=-a_{10}<0\)
    \(\therefore a_1+d=-11\),\(a_1+4d=-(a_1+9d)\),解得:\(a_1=-13\),\(d=2\)
    \(S_{15}=-13 \times 15+\dfrac{15 \times 14}{2} \times 2=15\)
    答案為:\(15\)

  10. 答案 (1) \(a_n=2n-5\)\(S_n=n^2-4n\); (2)\(54\)
    解析 設等差數列\(\{a_n \}\)的公差為\(d\)
    \(a_1=-3\)\(S_4=0\),得\(4a_1+6d=-12+6d=0\),即\(d=2\)
    (1)\(a_n=-3+2(n-1)=2n-5\)\(S_n=-3 n+\dfrac{n(n-1)}{2} \times 2=n^2-4 n\)
    (2) \(a_2+a_4+\cdots+a_8+a_{10}+a_{12}=-6+\dfrac{6 \times 5}{2} \times 4=54\)

  11. 答案 (1)\(a_n=10-6n\)\(S_n=7n-3n^2\);
    (2)存在\(n=5\),使\(S_n\)\(S_{n+2}+2n\)\(S_{n+3}\)成等差數列.
    解析 (1)設等差數列\(\{a_n \}\)的公差為\(d\)\(\because S_2=2\)\(S_3=-6\)
    \(\therefore 2a_1+d=2\)\(3a_1+3d=-6\),解得\(a_1=4\)\(d=-6\)
    \(\therefore a_n=4-6(n-1)=10-6n\).
    \(S_n=\dfrac{n(4+10-6 n)}{2}=7 n-3 n^2\)
    (2)假設存在\(n\),使\(S_n\)\(S_{n+2}+2n\)\(S_{n+3}\)成等差數列,
    \(12\left(S_{n+2}+2 n\right)=S_n+S_{n+3}\)
    \(\therefore 2[7{n+2}-3{n+2}^2+2n]=7n-3n^2+7(n+3)-3(n+3)^2\)
    解得\(n=5\)
    因此存在\(n=5\),使\(S_n\)\(S_{n+2}+2n\)\(S_{n+3}\)成等差數列.

【B組---提高題】

  1. 已知\(S_n\)是等差數列\(\{a_n\}\)的前\(n\)項和,且\(S_6>S_7>S_5\),給出下列五個命題:
    \(d<0\)\(\qquad \qquad\)\(S_{11}>0\)\(\qquad \qquad\)\(S_{12}<0\)\(\qquad \qquad\)
    ④數列\(\{S_n\}\)中的最大項為\(S_{11}\)\(\qquad \qquad\)\(|a_6 |>|a_7 |\).
    其中正確命題的個數是 ( )
     A.\(3\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C.\(5\) \(\qquad \qquad \qquad \qquad\) D.\(1\)
     

2.在數列\(\{a_n\}\)中,\(a_{n+2}-a_n=2(n∈N^* )\)\(a_1=-23\)\(a_2=-19\)\(S_n\)\(\{a_n\}\)的前\(n\)項和,則\(S_n\)的最小值為\(\underline{\quad \quad}\)
 

3.遞減的等差數列\(\{a_n\}\)的前\(n\)項和為\(S_n\),若\(a_3 a_5=63\),\(a_2+a_6=16\)
  (1)求\(\{a_n\}\)的等差通項;
  (2)當\(n\)為多少時,\(S_n\)取最大值,並求出其最大值;
  (3)求\(|a_1 |+|a_2 |+|a_3 |+⋯+|a_n |\).
 
 

參考答案

  1. 答案 \(A\)
    解析 \(\because S_6>S_7>S_5\)
    \(\therefore a_6=S_6-S_5>0\)\(a_7=S_7-S_6<0\)\(a_6+a_7=S_7-S_5>0\),
    \(d=a_7-a_6<0\) , 所以①正確;
    \(S_{11}=\dfrac{11\left(a_1+a_{11}\right)}{2}=11 a_6>0\),故②正確;
    \(S_{12}=6(a_1+a_{12} )=6(a_6+a_7 )>0\),故③錯誤;
    \(\because a_6>0\),\(a_7<0\)\(\therefore\)數列\(\{S_n\}\)中的最大項為\(S_6\),故④錯誤;
    \(\because a_6>0\),\(a_7<0\)\(a_6+a_7>0\)\(\therefore |a_6 |>|a_7 |\),故⑤正確.
    綜上,①②⑤正確,故選\(A\).

  2. 答案 \(-243\)
    解析 \(\because a_{n+2}-a_n=2(n∈N^* )\)\(a_1=-23\)
    \(\therefore\)數列\(\{a_n\}\)的奇數項是以\(-23\)為首項,\(2\)為公差的等差數列,
    \(a_n=-23+n-1=n-24\)
    \(n≤23\)\(n\)為奇數時,\(a_n<0\)\(n≥25\)\(n\)為奇數時,\(a_n>0\)
    \(\because a_2=-19\),\(a_{n+2}-a_n=2(n∈N^* )\)
    \(\therefore\)數列\(\{a_n\}\)的偶數項是以\(-19\)為首項,\(2\)為公差的等差數列,
    \(a_n=-19+n-2=n-21\)
    \(n≤20\)\(n\)為偶數時,\(a_n<0\)\(n≥22\)\(n\)為偶數時,\(a_n>0\)
    \(a_{22}=1\),\(a_{23}=-1\),\(a_{24}=3\)
    \(S_n\)的最小值為 \(S_{21}=S_{23}=-23 \times 11+\dfrac{11 \times 10}{2} \times 2-19 \times 10+\dfrac{10 \times 9}{2} \times 2=-243\)
    答案為:\(-243\)

  3. 答案(1) \(a_n=12-n\);(2) \(66\);(3) \(\left|a_1\right|+\left|a_2\right|+\left|a_3\right|+\cdots+\left|a_n\right|=\left\{\begin{array}{l} -\dfrac{1}{2} n^2+\dfrac{23}{2} n, n \leq 12 \\ \dfrac{1}{2} n^2-\dfrac{23}{2} n+132, n>12 \end{array}\right.\).
    解析 (1)\(a_2+a_6=a_3+a_5=16\),又\(a_3\cdot a_5=63\)
    所以\(a_3\)\(a_5\)是方程\(x^2-16x+63=0\)的兩根,
    解得\(\left\{\begin{array}{l} a_3=7 \\ a_5=9 \end{array}\right.\)\(\left\{\begin{array}{l} a_3=9 \\ a_5=7 \end{array}\right.\)
    又該等差數列遞減,所以\(\left\{\begin{array}{l} a_3=9 \\ a_5=7 \end{array}\right.\)
    則公差\(d=\dfrac{a_5-a_3}{2}=-1\)\(a_1=11\)
    所以\(a_n=11+{n-1}(-1)=12-n\)
    (2)由 \(\left\{\begin{array}{l} a_n \geq 0 \\ a_{n+1} \leq 0 \end{array}\right.\),即 \(\left\{\begin{array}{l} 12-n \geq 0 \\ 11-n \leq 0 \end{array}\right.\),解得\(11≤n≤12\)
    \(n∈N^*\),所以當\(n=11\)\(12\)\(S_n\)取最大值,
    最大值為 \(S_{11}=S_{12}=12 \times 11+\dfrac{12 \times 11}{2}(-1)=66\)
    (3)由(2)知,當\(n≤12\)\(a_n≥0\),當\(n>12\)\(a_n<0\)
    ①當\(n≤12\)時,
    \(|a_1 |+|a_2 |+|a_3 |+⋯+|a_n |=a_1+a_2+a_3+⋯+a_n\)
    \(=S_n=\dfrac{n\left(a_1+a_n\right)}{2}=\dfrac{n(11+12-n)}{2}=-\dfrac{1}{2} n^2+\dfrac{23}{2} n\)
    ②當\(n>12\)時,
    \(|a_1 |+|a_2 |+|a_3 |+⋯+|a_n |=(a_1+a_2+a_3+⋯+a_{12} )-(a_{13}+a_{14}+⋯+a_n)\)
    \(=-S_n+2 S_{12}=\dfrac{1}{2} n^2-\dfrac{23}{2} n+2 \times 66=\dfrac{1}{2} n^2-\dfrac{23}{2} n+132\)
    所以\(\left|a_1\right|+\left|a_2\right|+\left|a_3\right|+\cdots+\left|a_n\right|=\left\{\begin{array}{l} -\dfrac{1}{2} n^2+\dfrac{23}{2} n, n \leq 12 \\ \dfrac{1}{2} n^2-\dfrac{23}{2} n+132, n>12 \end{array}\right.\)

【C組---拓展題】

1.(多選)已知等差數列\(\{a_n \}\)的首項為\(a_1\),公差為\(d\),前\(n\)項和為\(S_n\),若 \(S_{20}<S_{18}<S_{19}\),則下列說法正確的是(  )
 A. \(a_1>0\) \(\qquad \qquad \qquad \qquad\) B. \(d>0\)
 C. \(\left|a_{18}+a_{19}\right|>\left|a_{20}+a_{21}\right|\) \(\qquad \qquad \qquad \qquad\) D. 數列 \(\left\{\dfrac{S_n}{a_n}\right\}\)的所有項中最小項為 \(\dfrac{S_{20}}{a_{20}}\)
 

2.設無窮等差數列\(\{a_n \}\)的前\(n\)項和為\(S_n\)
  (1)若首項 \(a_1=\dfrac{3}{2}\),公差\(d=1\),求滿足 \(S_{k^2}=\left(S_k\right)^2\)的正整數\(k\)
  (2)求所有的無窮等差數列\(\{a_n \}\),使得對於一切正整數k都有 \(S_{k^2}=\left(S_k\right)^2\)成立.
 

參考答案

  1. 答案 \(AD\)
    解析 \(\because S_{20}<S_{18}<S_{19}\)\(\therefore a_{19}+a_{20}<0<a_{19}\)
    \(\therefore a_{19}>0\)\(a_{20}<0\)
    \(\therefore a_1+18d>0\)\(a_1+19d<0\)
    \(\therefore a_1>0\)\(d<0\)
    \(a_{19}+a_{20}<0<a_{19}\)
    \(\therefore a_{21}+a_{18}<0\)
    \(a_{20}+a_{21}-\left(a_{18}+a_{19}\right)=4 d<0\)\(a_{19}+a_{20}+a_{21}+a_{18}<0\)
    \(\therefore\left|a_{20}+a_{21}\right|>\left|a_{18}+a_{19}\right|\)
    由以上可得: \(a_1>a_2>\cdots>a_{19}>0>a_{20}>a_{21}>\cdots\)
    \(S_{37}=\dfrac{37\left(a_1+a_{37}\right)}{2}=37 a_{19}>0\); \(S_{38}=\dfrac{38\left(a_1+a_{38}\right)}{2}=19\left(a_{19}+a_{20}\right)<0\)
    \(n≤37\)時,\(S_n>0\)\(n≥38\)時,\(S_n<0\)
    \(n≤19\)時,或\(n≥38\)時, \(\dfrac{S_n}{a_n}>0\)\(19<n<38\)時, \(\dfrac{S_n}{a_n}<0\)
    \(0>a_{20}>a_{21}>\cdots>a_{37}\)\(S_{20}>S_{21}>\cdots>S_{37}>0\)
    \(\therefore\)數列 \(\left\{\dfrac{S_n}{a_n}\right\}\)的所有項中最小項為 \(\dfrac{S_{20}}{a_{20}}\)
    綜上可得:只有\(AD\)正確.

  2. 答案 (1) 4;(2) ①\(a_n=0\); ②\(a_n=1\);③\(a_n=2n-1\)
    解析 (1)\(\because\) 首項 \(a_1=\dfrac{3}{2}\),公差\(d=1\)
    \(\therefore S_n=n a_1+\dfrac{n(n-1)}{2} d=\dfrac{3}{2} n+\dfrac{n(n-1)}{2}=\dfrac{1}{2} n^2+n\)
    \(S_{k^2}=\left(S_k\right)^2\)\(\dfrac{1}{2}\left(k^2\right)^2+k^2=\left(\dfrac{1}{2} k^2+k\right)^2\),即 \(\dfrac{1}{4} k^4-k^3=0\)
    \(\because k\)是正整數, \(\therefore k=4\)
    (2)設數列\(\{a_n \}\)的公差為\(d\)
    則在\(S_{k^2}=\left(S_k\right)^2\)中分別取\(k=1\),和\(k=2\)\(\left\{\begin{array}{l} S_1=\left(S_1\right)^2 \\ S_4=\left(S_2\right)^2 \end{array}\right.\)
    \(\left\{\begin{array}{l} a_1=a_1^2,(1) \\ 4 a_1+6 d=\left(2 a_1+d\right)^2 ,(2) \end{array}\right.\)
    由(1)得\(a_1=0\)\(a_1=1\)
    \(a_1=0\)時,代入(2)得\(d=0\)\(d=6\).若\(a_1=0\)\(d=0\)則本題成立;
    \(a_1=0\)\(d=6\),則\(a_n=6(n-1)\)
    \(S_3=18\)\((S_3 )^2=324\)\(S_9=216\)\(S_9≠(S_3 )^2\),故所得數列不符合題意;
    \(a_1=1\)時,代入②得\(4+6d=(2+d)^2\),解得\(d=0\)\(d=2\)
    \(a_1=1\)\(d=0\),則\(a_n=1\)\(S_n=n\)從而 \(S_{k^2}=\left(S_k\right)^2\)成立;
    \(a_1=1\)\(d=2\),則\(a_n=2n-1\)\(S_n=n^2\)
    從而 \(S_{k^2}=\left(S_k\right)^2\)成立.
    綜上所述,只有\(3\)個滿足條件的無窮等差數列:
    \(a_n=0\); ②\(a_n=1\);③\(a_n=2n-1\)