1. 程式人生 > 程式設計 >如何把Spring Cloud Data Flow部署在Kubernetes上

如何把Spring Cloud Data Flow部署在Kubernetes上

1 前言

Spring Cloud Data Flow在本地跑得好好的,為什麼要部署在Kubernetes上呢?主要是因為Kubernetes能提供更靈活的微服務管理;在叢集上跑,會更安全穩定、更合理利用物理資源。

Spring Cloud Data Flow入門簡介請參考:Spring Cloud Data Flow初體驗,以Local模式執行

2 部署Data Flow到Kubernetes

以簡單為原則,我們依然是基於Batch任務,不部署與Stream相關的元件。

2.1 下載GitHub程式碼

我們要基於官方提供的部署程式碼進行修改,先把官方程式碼clone下來:

$ git clone https://github.com/spring-cloud/spring-cloud-dataflow.git

我們切換到最新穩定版本的程式碼版本:

$ git checkout v2.5.3.RELEASE

2.2 建立許可權賬號

為了讓Data Flow Server有許可權來跑任務,能在Kubernetes管理資源,如新建Pod等,所以要建立對應的許可權賬號。這部分程式碼與原始碼一致,不需要修改:

(1)server-roles.yaml

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: scdf-role
rules:
 - apiGroups: [""]
 resources: ["services","pods","replicationcontrollers","persistentvolumeclaims"]
 verbs: ["get","list","watch","create","delete","update"]
 - apiGroups: [""]
 resources: ["configmaps","secrets","pods/log"]
 verbs: ["get","watch"]
 - apiGroups: ["apps"]
 resources: ["statefulsets","deployments","replicasets"]
 verbs: ["get","update","patch"]
 - apiGroups: ["extensions"]
 resources: ["deployments","patch"]
 - apiGroups: ["batch"]
 resources: ["cronjobs","jobs"]
 verbs: ["create","get","patch"]

(2)server-rolebinding.yaml

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
 name: scdf-rb
subjects:
- kind: ServiceAccount
 name: scdf-sa
roleRef:
 kind: Role
 name: scdf-role
 apiGroup: rbac.authorization.k8s.io

(3)service-account.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: scdf-sa

執行以下命令,建立對應賬號:

$ kubectl create -f src/kubernetes/server/server-roles.yaml 
$ kubectl create -f src/kubernetes/server/server-rolebinding.yaml 
$ kubectl create -f src/kubernetes/server/service-account.yaml 

執行完成後,可以檢查一下:

$ kubectl get role
NAME  AGE
scdf-role 119m

$ kubectl get rolebinding
NAME  AGE
scdf-rb 117m

$ kubectl get serviceAccount
NAME  SECRETS AGE
default 1   27d
scdf-sa 1   117m

2.3 部署MySQL

可以選擇其它資料庫,如果本來就有資料庫,可以不用部署,在部署Server的時候改一下配置就好了。這裡跟著官方的Guide來。為了保證部署不會因為映象下載問題而失敗,我提前下載了映象:

$ docker pull mysql:5.7.25

MySQLyaml檔案也不需要修改,直接執行以下命令即可:

$ kubectl create -f src/kubernetes/mysql/

執行完後檢查一下:

$ kubectl get Secret
NAME     TYPE         DATA AGE
default-token-jhgfp kubernetes.io/service-account-token 3  27d
mysql     Opaque        2  98m
scdf-sa-token-wmgk6 kubernetes.io/service-account-token 3  123m

$ kubectl get PersistentVolumeClaim
NAME STATUS VOLUME          CAPACITY ACCESS MODES STORAGECLASS AGE
mysql Bound pvc-e95b495a-bea5-40ee-9606-dab8d9b0d65c 8Gi  RWO   hostpath  98m

$ kubectl get Deployment
NAME   READY UP-TO-DATE AVAILABLE AGE
mysql   1/1  1   1   98m

$ kubectl get Service
NAME   TYPE  CLUSTER-IP  EXTERNAL-IP PORT(S)  AGE
mysql   ClusterIP 10.98.243.130 <none>  3306/TCP  98m

2.4 部署Data Flow Server

2.4.1 修改配置檔案server-config.yaml

刪除掉不用的配置,主要是PrometheusGrafana的配置,結果如下:

apiVersion: v1
kind: ConfigMap
metadata:
 name: scdf-server
 labels:
 app: scdf-server
data:
 application.yaml: |-
 spring:
  cloud:
  dataflow:
   task:
   platform:
    kubernetes:
    accounts:
     default:
     limits:
      memory: 1024Mi
  datasource:
  url: jdbc:mysql://${MYSQL_SERVICE_HOST}:${MYSQL_SERVICE_PORT}/mysql
  username: root
  password: ${mysql-root-password}
  driverClassName: org.mariadb.jdbc.Driver
  testOnBorrow: true
  validationQuery: "SELECT 1"

2.4.2 修改server-svc.yaml

因為我是本地執行的Kubernetes,所以把Service型別從LoadBalancer改為NodePort,並配置埠為30093

kind: Service
apiVersion: v1
metadata:
 name: scdf-server
 labels:
 app: scdf-server
 spring-deployment-id: scdf
spec:
 # If you are running k8s on a local dev box or using minikube,you can use type NodePort instead
 type: NodePort
 ports:
 - port: 80
  name: scdf-server
  nodePort: 30093
 selector:
 app: scdf-server

2.4.3 修改server-deployment.yaml

主要把Stream相關的去掉,如SPRING_CLOUD_SKIPPER_CLIENT_SERVER_URI配置項:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: scdf-server
 labels:
 app: scdf-server
spec:
 selector:
 matchLabels:
  app: scdf-server
 replicas: 1
 template:
 metadata:
  labels:
  app: scdf-server
 spec:
  containers:
  - name: scdf-server
  image: springcloud/spring-cloud-dataflow-server:2.5.3.RELEASE
  imagePullPolicy: IfNotPresent
  volumeMounts:
   - name: database
   mountPath: /etc/secrets/database
   readOnly: true
  ports:
  - containerPort: 80
  livenessProbe:
   httpGet:
   path: /management/health
   port: 80
   initialDelaySeconds: 45
  readinessProbe:
   httpGet:
   path: /management/info
   port: 80
   initialDelaySeconds: 45
  resources:
   limits:
   cpu: 1.0
   memory: 2048Mi
   requests:
   cpu: 0.5
   memory: 1024Mi
  env:
  - name: KUBERNETES_NAMESPACE
   valueFrom:
   fieldRef:
    fieldPath: "metadata.namespace"
  - name: SERVER_PORT
   value: '80'
  - name: SPRING_CLOUD_CONFIG_ENABLED
   value: 'false'
  - name: SPRING_CLOUD_DATAFLOW_FEATURES_ANALYTICS_ENABLED
   value: 'true'
  - name: SPRING_CLOUD_DATAFLOW_FEATURES_SCHEDULES_ENABLED
   value: 'true'
  - name: SPRING_CLOUD_KUBERNETES_SECRETS_ENABLE_API
   value: 'true'
  - name: SPRING_CLOUD_KUBERNETES_SECRETS_PATHS
   value: /etc/secrets
  - name: SPRING_CLOUD_KUBERNETES_CONFIG_NAME
   value: scdf-server
  - name: SPRING_CLOUD_DATAFLOW_SERVER_URI
   value: 'http://${SCDF_SERVER_SERVICE_HOST}:${SCDF_SERVER_SERVICE_PORT}'
   # Add Maven repo for metadata artifact resolution for all stream apps
  - name: SPRING_APPLICATION_JSON
   value: "{ \"maven\": { \"local-repository\": null,\"remote-repositories\": { \"repo1\": { \"url\": \"https://repo.spring.io/libs-snapshot\"} } } }"
  initContainers:
  - name: init-mysql-wait
  image: busybox
  command: ['sh','-c','until nc -w3 -z mysql 3306; do echo waiting for mysql; sleep 3; done;']
  serviceAccountName: scdf-sa
  volumes:
  - name: database
   secret:
   secretName: mysql

2.4.4 部署Server

完成檔案修改後,就可以執行以下命令部署了:

# 提前下載映象
$ docker pull springcloud/spring-cloud-dataflow-server:2.5.3.RELEASE

# 部署Data Flow Server
$ kubectl create -f src/kubernetes/server/server-config.yaml 
$ kubectl create -f src/kubernetes/server/server-svc.yaml 
$ kubectl create -f src/kubernetes/server/server-deployment.yaml 

執行完成,沒有錯誤就可以訪問:http://localhost:30093/dashboard/

如何把Spring Cloud Data Flow部署在Kubernetes上

3 執行一個Task

檢驗是否部署成功最簡單的方式就是跑一個任務試試。還是按以前的步驟,先註冊應用,再定義Task,然後執行。

我們依舊使用官方已經準備好的應用,但要注意這次我們選擇是的Docker格式,而不是jar包了。

如何把Spring Cloud Data Flow部署在Kubernetes上

如何把Spring Cloud Data Flow部署在Kubernetes上

成功執行後,檢視KubernetesDashboard,能看到一個剛建立的Pod

如何把Spring Cloud Data Flow部署在Kubernetes上

4 總結

本文通過一步步講解,把Spring Cloud Data Flow成功部署在了Kubernetes上,併成功在Kubenetes上跑了一個任務,再也不再是Local本地單機模式了。

到此這篇關於把Spring Cloud Data Flow部署在Kubernetes上,再跑個任務試試的文章就介紹到這了,更多相關把Spring Cloud Data Flow部署在Kubernetes上,再跑個任務試試內容請搜尋我們以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援我們!