PyTorch Quick Start
阿新 • • 發佈:2020-08-09
聽說PyTorch比Tensorflow更加直觀,更容易理解,就試一試
一、安裝
開啟官網
按自己的情況選擇,我是在windows上且只使用cpu,下載最新的穩定版。
直接複製命令執行即可。
但是Torch有點大,直接用pip下載有點大。我們可以找到命令執行時所下載的xx.whl,拿出來用FDM等多執行緒下載器下載,然後再安裝,例如
https://download.pytorch.org/whl/cpu/torch-1.6.0%2Bcpu-cp38-cp38-win_amd64.whl >pip uninstall "torch-1.6.0+cpu-cp38-cp38-win_amd64.whl"
注意,torchvision版本與torch版本是對應的,不能隨意匹配。所以我們用之前的命令把torchvision下完(已經下好的torch會自動跳過)
二、示例
import torch import torch.nn.functional as F import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1) y = x.pow(2) + 0.2*torch.rand(x.size()) #noisy y data (tensor), shape=(100, 1) # torch can only train on Variable, so convert them to Variable # The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors # x, y = Variable(x), Variable(y) # plt.scatter(x.data.numpy(), y.data.numpy()) # plt.show() class Net(torch.nn.Module):def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer self.predict = torch.nn.Linear(n_hidden, n_output) # output layer def forward(self, x): x = F.relu(self.hidden(x)) # activation function for hidden layer x = self.predict(x) # linear output return x net = Net(n_feature=1, n_hidden=10, n_output=1) # define the network print(net) # net architecture optimizer = torch.optim.SGD(net.parameters(), lr=0.2) loss_func = torch.nn.MSELoss() # this is for regression mean squared loss plt.ion() # something about plotting for t in range(200): prediction = net(x) # input x and predict based on x loss = loss_func(prediction, y) # must be (1. nn output, 2. target) optimizer.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients if t % 5 == 0: # plot and show learning process plt.cla() plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1) plt.ioff() plt.show()
三、其他
增加一層中間層,並使用啟用函式,得到3個不同的net,進行橫向對比
""" View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/ My Youtube Channel: https://www.youtube.com/user/MorvanZhou Dependencies: torch: 0.4 matplotlib """ import torch from torch import nn import torch.nn.functional as F import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1) y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1) # 1 10 1 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer self.predict = torch.nn.Linear(n_hidden, n_output) # output layer def forward(self, x): x = F.relu(self.hidden(x)) # activation function for hidden layer x = self.predict(x) # linear output return x # 1 10 10 1 class simpleNet(nn.Module): """ 定義了一個簡單的三層全連線神經網路,每一層都是線性的 """ def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim): super(simpleNet, self).__init__() self.layer1 = nn.Linear(in_dim, n_hidden_1) self.layer2 = nn.Linear(n_hidden_1, n_hidden_2) self.layer3 = nn.Linear(n_hidden_2, out_dim) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) return x class Activation_Net(nn.Module): """ 在上面的simpleNet的基礎上,在每層的輸出部分添加了啟用函式 """ def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim): super(Activation_Net, self).__init__() self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.ReLU(True)) self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.ReLU(True)) self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim)) """ 這裡的Sequential()函式的功能是將網路的層組合到一起。 """ def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) return x class Batch_Net(nn.Module): """ 在上面的Activation_Net的基礎上,增加了一個加快收斂速度的方法——批標準化 """ def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim): super(Batch_Net, self).__init__() self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1), nn.ReLU(True)) self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2), nn.ReLU(True)) self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim)) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) return x def Use(net): # print(net) optimizer = torch.optim.SGD(net.parameters(), lr=0.2) loss_func = torch.nn.MSELoss() # this is for regression mean squared loss prediction = net(x) # input x and predict based on x loss = loss_func(prediction, y) # must be (1. nn output, 2. target) optimizer.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients optimizer.step() return prediction, loss def Draw(prediction, loss, ax): # plt.figure(figsize=(8,6), dpi=80) # ax = plt.subplot(1,2,num) ax.cla() ax.scatter(x.data.numpy(), y.data.numpy()) ax.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) ax.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 15, 'color': 'red'}) plt.pause(0.1) def start(ax1, ax2, ax3, ax4, net1, net2, net3, net4): for t in range(50): print("Generation %d" % t) prediction, loss = Use(net1) Draw(prediction, loss, ax1) prediction, loss = Use(net2) Draw(prediction, loss, ax2) prediction, loss = Use(net3) Draw(prediction, loss, ax3) prediction, loss = Use(net4) Draw(prediction, loss, ax4) plt.show() plt.figure(figsize=(8, 8), dpi=80) ax1 = plt.subplot(2,2,1) ax2 = plt.subplot(2,2,2) ax3 = plt.subplot(2,2,3) ax4 = plt.subplot(2,2,4) net1 = Net(n_feature=1, n_hidden=10, n_output=1) net2 = simpleNet(in_dim=1, n_hidden_1=10, n_hidden_2=15, out_dim=1) net3 = Activation_Net(in_dim=1, n_hidden_1=10, n_hidden_2=15, out_dim=1) net4 = Batch_Net(in_dim=1, n_hidden_1=10, n_hidden_2=15, out_dim=1) start(ax1, ax2, ax3, ax4, net1, net2, net3, net4)
參考連結:
1.https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/301_regression.py
2.https://blog.csdn.net/out_of_memory_error/article/details/81414986