1. 程式人生 > 實用技巧 >Solution -「ACM-ICPC BJ 2002」「POJ 1322」Chocolate

Solution -「ACM-ICPC BJ 2002」「POJ 1322」Chocolate

\(\mathcal{Description}\)

  Link.

  \(c\) 種口味的的巧克力,每種個數無限。每次取出一個,取 \(n\) 次,求恰有 \(c\) 個口味出現奇數次的概率。

\(\mathcal{Solution}\)

  由於比較板(且要補的題太多),所以會簡略一點。

  首先,\(n,m\) 不同奇偶;\(m\) 大於 \(c\)\(n\) 無解,特判掉。考慮到“取出”有序,引入 \(\text{EGF}\)。顯然題目要求:

\[[x^n]\binom{c}{m}\left(\frac{e^x+e^{-x}}2\right)^{c-m}\left(\frac{e^x-e^{-x}}2\right)^m \]

  記後面這個式子為 \(G(x)\),推導:

\[\begin{aligned}G(x)&=\binom{c}{m}2^{-c}(e^x+e^{-x})^{c-m}(e^x-e^{-x})^m\\&=\binom{c}{m}2^{-c}\sum_{i=0}^{c-m}\sum_{j=0}^m(-1)^j\binom{c-m}{i}\binom{m}{j}e^{(c-2i-2j)x}\\&=\binom{c}{m}2^{-c}\sum_{i=0}^{c-m}\sum_{j=0}^m(-1)^j\binom{c-m}{i}\binom{m}{j}\sum_{k=0}^{+\infty}\frac{(c-2i-2j)^k}{k!}\end{aligned} \]

  代入 \(k=n\)\(\mathcal O(n^2)\) 求解,注意精度。

\(\mathcal{Code}\)

#include <cstdio>

const int MAXC = 100;
int c, n, m;
double comb[MAXC + 5][MAXC + 5];

inline void init () {
	comb[0][0] = 1;
	for ( int i = 1; i <= MAXC; ++ i ) {
		comb[i][0] = 1;
		for ( int j = 1; j <= i; ++ j ) {
			comb[i][j] = comb[i - 1][j - 1] + comb[i - 1][j];
		}
	}
}

inline double qkpow ( double a, int b ) {
	double ret = 1;
	for ( ; b; a *= a, b >>= 1 ) ret *= b & 1 ? a : 1.0;
	return ret;
}

int main () {
	init ();
	while ( ~ scanf ( "%d", &c ) && c ) {
		scanf ( "%d %d", &n, &m );
		if ( ( n & 1 ) ^ ( m & 1 ) || m > c || m > n ) { puts ( "0.000" ); continue; }
		double ans = 0;
		for ( int i = 0; i <= c - m; ++ i ) {
			for ( int j = 0; j <= m; ++ j ) {
				ans += ( j & 1 ? -1 : 1 ) * comb[c - m][i]
				    * comb[m][j] * qkpow ( ( 2.0 * i + 2.0 * j - c ) / c, n );
			}
		}
		ans = ans * comb[c][m] / qkpow ( 2, c );
		printf ( "%.3f\n", ans );
	}
	return 0;
}