單機百萬併發,golang 50行程式碼
本文首先介紹單機百萬併發的測試方法和測試結果,然後分析go語言50行程式碼實現的單機百萬併發網路伺服器背後的祕密
組網
採用6臺2核8G記憶體的雲主機作為client
採用1臺4核16G記憶體的雲主機作為server
client端設定
設定系統開啟的最大檔案數為20萬
ulimit -n 200000
修改埠可用範圍為1024到65535
echo 1024 65535 > /proc/sys/net/ipv4/ip_local_port_range
單臺client虛機建立18萬連線
配置單網絡卡多ip,每個網絡卡配置三個ip,啟動三個client程序,每個client程序指定不同的local ip建立6萬連線,總共18萬連線
server端配置
設定系統開啟的最大檔案數為100萬
ulimit -n 1000000
設定半連線佇列和全連線佇列長度
測試過程中出現了一個現象,客戶端建立了30000連線,服務端只建立了28570連線
經過排查,原因是:
1 全連線佇列滿了,如下圖,overflowed次數在增加
2 tcp_abort_on_overflow 為0,表示如果三次握手第三步的時候全連線佇列滿了那麼server扔掉client 發過來的ack(在server端認為連線還沒建立起來)
tcp_abort_on_overflow為 1,表示第三步的時候如果全連線佇列滿了,server傳送一個reset包給client,表示廢掉這個握手過程和這個連線(本來在server端這個連線就還沒建立起來)
解決方法:
設定半連線佇列長度為10000
echo 10000 >/proc/sys/net/ipv4/tcp_max_syn_backlog
設定全連線佇列長度為10000
echo 10000 >/proc/sys/net/core/somaxconn
參考 【轉】關於TCP 半連線佇列和全連線佇列 - sidesky - 部落格園
linux核心調優tcp_max_syn_backlog和somaxconn的區別-10931853-51CTO部落格
設定conntrack最大連線數
預設net.nf_conntrack_max 為 262144,設定為100萬
sysctl -w net.nf_conntrack_max=1000000
tcp最大連線數調優,可參考
最終測試結果
server建立起96萬連線
平時ss命令使用最多的是ss -anp,這裡需要注意在連線數非常大的時候,指定p引數命令慢的幾乎不可用,這裡只指定an引數
ss比netstat效能好,參考https://blog.csdn.net/hustsselbj/article/details/47438781
cpu和記憶體使用情況
cpu大概佔用2個核,記憶體3g
檢視cpu硬體資訊,cpu的頻率為2.4G
檢視cpu硬體資訊,參考 linux(centos)檢視cpu硬體資訊命令圖解教程 電腦維修技術網
客戶端、服務端程式碼實現
客戶端
package main
import (
"flag"
"fmt"
"net"
"os"
"time"
)
var RemoteAddr *string
var ConcurNum *int
var LocalAddr *string
func init() {
RemoteAddr = flag.String("remote-ip", "127.0.0.1", "ip addr of remote server")
ConcurNum = flag.Int("concurrent-num", 100, "concurrent number of client")
LocalAddr = flag.String("local-ip", "0.0.0.0", "ip addr of remote server")
}
func consume() {
laddr := &net.TCPAddr{IP: net.ParseIP(*LocalAddr)}
var dialer net.Dialer
dialer.LocalAddr = laddr
conn, err := dialer.Dial("tcp", *RemoteAddr+":8888")
if err != nil {
fmt.Println("dial failed:", err)
os.Exit(1)
}
defer conn.Close()
buffer := make([]byte, 512)
for {
_, err2 := conn.Read(buffer)
if err2 != nil {
fmt.Println("Read failed:", err2)
return
}
// fmt.Println("count:", n, "msg:", string(buffer))
}
}
func main() {
flag.Parse()
for i := 0; i < *ConcurNum; i++ {
go consume()
}
time.Sleep(3600 * time.Second)
}
服務端
package main
import (
"fmt"
"net"
"os"
"time"
)
var array []byte = make([]byte, 10)
func checkError(err error, info string) (res bool) {
if err != nil {
fmt.Println(info + " " + err.Error())
return false
}
return true
}
func Handler(conn net.Conn) {
for {
_, err := conn.Write(array)
if err != nil {
return
}
time.Sleep(10 * time.Second)
}
}
func main() {
for i := 0; i < 10; i += 1 {
array[i] = 'a'
}
service := ":8888"
tcpAddr, _ := net.ResolveTCPAddr("tcp4", service)
l, _ := net.ListenTCP("tcp", tcpAddr)
for {
conn, err := l.Accept()
if err != nil {
fmt.Printf("accept error, err=%s\n", err.Error())
os.Exit(1)
}
go Handler(conn)
}
}
高效能網路程式設計的執行緒模型
TPC
TPC 是 Thread Per Connection 的縮寫,指每次有新的連線就新建一個執行緒去專門處理這個連線請求。
模型特點:
- 採用阻塞式I/O模型獲取輸入資料
- 每個連線都需要獨立的執行緒完成資料輸入,業務處理,資料返回的完整操作
存在的問題:
- 併發數較大時,需要建立大量執行緒來處理連線,系統資源佔用較大
reactor
reactor模式的核心組成包括reactor和執行緒池。reactor負責監聽網路連線的IO是否可讀可寫,執行緒池負責具體業務的處理。在高併發的場景下,reactor採用epoll的效率非常高。
模型特點:
- 採用非阻塞I/O,I/O多路複用
- 採用執行緒池來處理業務
golang GPC模型
GPC 是 Goroutine Per Connection 的縮寫,指每次有新的連線就新啟動一個golang協程去專門處理這個連線請求。
模型特點:
- 可採用阻塞IO的方式程式設計
- 每個連線都需要獨立的協程完成資料輸入,業務處理,資料返回的完整操作
為什麼GPC可以支援單機百萬併發
GPC模型跟TPC模型看起來非常相似,為什麼GPC可以支援單機百萬併發呢?
GPC模型、TPC模型比較
- 棧大小:GPC模型中goroutine棧初始大小為4kB,棧的大小可以按需動態增加或減小。而TPC模型中執行緒預設棧大小為1MB。
- IO模型:GPC和TPC都是阻塞式程式設計。但是GPC模型底層是非阻塞IO,golang在語言層面將非阻塞IO包裝成了阻塞IO(底層實現是非阻塞IO未就緒時,讀操作返回EAGAIN,golang執行時系統將協程狀態設定為Wait,進行協程的切換)
- 協程、執行緒的切換: 協程的切換比執行緒切換要簡單的多,可參考linux作業系統筆記(程序)
GPC模型背後的祕密
GPC模型底層實現其實是reactor模型,golang在語言層面將這一模型封裝好,可以採用阻塞的方式編碼
GPC模型原始碼分析
golang原始碼版本為1.9.4
IO執行緒的原始碼實現
啟動一個執行緒執行sysmon函式
runtime/proc.go
// The main goroutine.
func main() {
g := getg()
// Racectx of m0->g0 is used only as the parent of the main goroutine.
// It must not be used for anything else.
g.m.g0.racectx = 0
// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
// Using decimal instead of binary GB and MB because
// they look nicer in the stack overflow failure message.
if sys.PtrSize == 8 {
maxstacksize = 1000000000
} else {
maxstacksize = 250000000
}
// Allow newproc to start new Ms.
mainStarted = true
systemstack(func() {
//啟動執行緒,執行sysmon函式
newm(sysmon, nil)
})
...........
sysmon的實現
sysmon函式執行netpoll,獲得可讀寫的fd,將fd關聯的協程的狀態設定為ready
runtime/proc.go
func sysmon() {
// If a heap span goes unused for 5 minutes after a garbage collection,
// we hand it back to the operating system.
scavengelimit := int64(5 * 60 * 1e9)
if debug.scavenge > 0 {
// Scavenge-a-lot for testing.
forcegcperiod = 10 * 1e6
scavengelimit = 20 * 1e6
}
lastscavenge := nanotime()
nscavenge := 0
lasttrace := int64(0)
idle := 0 // how many cycles in succession we had not wokeup somebody
delay := uint32(0)
for {
if idle == 0 { // start with 20us sleep...
delay = 20
} else if idle > 50 { // start doubling the sleep after 1ms...
delay *= 2
}
if delay > 10*1000 { // up to 10ms
delay = 10 * 1000
}
usleep(delay)
。。。。
// poll network if not polled for more than 10ms
lastpoll := int64(atomic.Load64(&sched.lastpoll))
now := nanotime()
if lastpoll != 0 && lastpoll+10*1000*1000 < now {
atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
//netpoll中會執行epollWait,epollWait返回可讀寫的fd
//netpoll返回可讀寫的fd關聯的協程
gp := netpoll(false) // non-blocking - returns list of goroutines
if gp != nil {
// Need to decrement number of idle locked M's
// (pretending that one more is running) before injectglist.
// Otherwise it can lead to the following situation:
// injectglist grabs all P's but before it starts M's to run the P's,
// another M returns from syscall, finishes running its G,
// observes that there is no work to do and no other running M's
// and reports deadlock.
incidlelocked(-1)
//將可讀寫fd關聯的協程狀態設定為ready
injectglist(gp)
incidlelocked(1)
}
}
。。。。。。
}
netpoll的實現
netpoll執行epollWait,獲取可讀寫的fd,返回可讀寫fd關聯的協程
runtime/netpoll_epoll.go
// polls for ready network connections
// returns list of goroutines that become runnable
func netpoll(block bool) *g {
if epfd == -1 {
return nil
}
waitms := int32(-1)
if !block {
waitms = 0
}
var events [128]epollevent
retry:
n := epollwait(epfd, &events[0], int32(len(events)), waitms)
// print("epoll wait\n")
if n < 0 {
if n != -_EINTR {
println("runtime: epollwait on fd", epfd, "failed with", -n)
throw("runtime: netpoll failed")
}
goto retry
}
var gp guintptr
for i := int32(0); i < n; i++ {
ev := &events[i]
if ev.events == 0 {
continue
}
var mode int32
if ev.events&(_EPOLLIN|_EPOLLRDHUP|_EPOLLHUP|_EPOLLERR) != 0 {
mode += 'r'
}
if ev.events&(_EPOLLOUT|_EPOLLHUP|_EPOLLERR) != 0 {
mode += 'w'
}
if mode != 0 {
pd := *(**pollDesc)(unsafe.Pointer(&ev.data))
//將pd關聯的協程加入到gp協程鏈上
netpollready(&gp, pd, mode)
}
}
if block && gp == 0 {
goto retry
}
return gp.ptr()
}
injectglist的實現
injectglist將協程的狀態設定為ready狀態
runtime/proc.go
// Injects the list of runnable G's into the scheduler.
// Can run concurrently with GC.
func injectglist(glist *g) {
if glist == nil {
return
}
if trace.enabled {
for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
traceGoUnpark(gp, 0)
}
}
lock(&sched.lock)
var n int
for n = 0; glist != nil; n++ {
gp := glist
glist = gp.schedlink.ptr()
//將waiting狀態的協程設定為runnable
casgstatus(gp, _Gwaiting, _Grunnable)
globrunqput(gp)
}
unlock(&sched.lock)
for ; n != 0 && sched.npidle != 0; n-- {
startm(nil, false)
}
}
服務端socket實現
net.ListenTCP的實現
ListenTCP呼叫socket函式,socket函式會通過系統呼叫建立socket、設定非阻塞、bind、listen
net/sock_posix.go
// socket returns a network file descriptor that is ready for
// asynchronous I/O using the network poller.
func socket(ctx context.Context, net string, family, sotype, proto int, ipv6only bool, laddr, raddr sockaddr) (fd *netFD, err error) {
//sysSocket函式會通過系統呼叫建立socket,並通過系統呼叫設定非阻塞
s, err := sysSocket(family, sotype, proto)
if err != nil {
return nil, err
}
if err = setDefaultSockopts(s, family, sotype, ipv6only); err != nil {
poll.CloseFunc(s)
return nil, err
}
//為socket分配檔案描述符fd
if fd, err = newFD(s, family, sotype, net); err != nil {
poll.CloseFunc(s)
return nil, err
}
// This function makes a network file descriptor for the
// following applications:
//
// - An endpoint holder that opens a passive stream
// connection, known as a stream listener
//
// - An endpoint holder that opens a destination-unspecific
// datagram connection, known as a datagram listener
//
// - An endpoint holder that opens an active stream or a
// destination-specific datagram connection, known as a
// dialer
// - An endpoint holder that opens the other connection, such
// as talking to the protocol stack inside the kernel
//
// For stream and datagram listeners, they will only require
// named sockets, so we can assume that it's just a request
// from stream or datagram listeners when laddr is not nil but
// raddr is nil. Otherwise we assume it's just for dialers or
// the other connection holders.
if laddr != nil && raddr == nil {
switch sotype {
case syscall.SOCK_STREAM, syscall.SOCK_SEQPACKET:
//listenStream會通過系統呼叫bind繫結socket地址,通過系統呼叫listen
//進行socket監聽,通過fd.init()函式將fd加入epoll
if err := fd.listenStream(laddr, listenerBacklog); err != nil {
fd.Close()
return nil, err
}
return fd, nil
case syscall.SOCK_DGRAM:
if err := fd.listenDatagram(laddr); err != nil {
fd.Close()
return nil, err
}
return fd, nil
}
}
if err := fd.dial(ctx, laddr, raddr); err != nil {
fd.Close()
return nil, err
}
return fd, nil
Accept的實現
net/fd_unix.go
func (fd *netFD) accept() (netfd *netFD, err error) {
//pfd.Accept會執行accept系統呼叫,返回新的socket連線,
//並設定新的socket連線為非阻塞
d, rsa, errcall, err := fd.pfd.Accept()
if err != nil {
if errcall != "" {
err = wrapSyscallError(errcall, err)
}
return nil, err
}
//為新的連線分配一個檔案描述符
if netfd, err = newFD(d, fd.family, fd.sotype, fd.net); err != nil {
poll.CloseFunc(d)
return nil, err
}
//通過netfd.init(),將accept新返回的socket fd新增到epoll
if err = netfd.init(); err != nil {
fd.Close()
return nil, err
}
lsa, _ := syscall.Getsockname(netfd.pfd.Sysfd)
netfd.setAddr(netfd.addrFunc()(lsa), netfd.addrFunc()(rsa))
return netfd, nil
}
internal/poll/fd_unix.go
// Accept wraps the accept network call.
func (fd *FD) Accept() (int, syscall.Sockaddr, string, error) {
if err := fd.readLock(); err != nil {
return -1, nil, "", err
}
defer fd.readUnlock()
if err := fd.pd.prepareRead(fd.isFile); err != nil {
return -1, nil, "", err
}
for {
//accept函式內部會執行accept系統呼叫
//將返回的新的socket fd設定為非阻塞
s, rsa, errcall, err := accept(fd.Sysfd)
if err == nil {
return s, rsa, "", err
}
switch err {
//socket全連線佇列為空
case syscall.EAGAIN:
if fd.pd.pollable() {
//設定協程狀態為wait
if err = fd.pd.waitRead(fd.isFile); err == nil {
continue
}
}
case syscall.ECONNABORTED:
// This means that a socket on the listen
// queue was closed before we Accept()ed it;
// it's a silly error, so try again.
continue
}
return -1, nil, errcall, err
}
}
Read的實現
internal/poll/fd_unix.go
// Read implements io.Reader.
func (fd *FD) Read(p []byte) (int, error) {
if err := fd.readLock(); err != nil {
return 0, err
}
defer fd.readUnlock()
if len(p) == 0 {
// If the caller wanted a zero byte read, return immediately
// without trying (but after acquiring the readLock).
// Otherwise syscall.Read returns 0, nil which looks like
// io.EOF.
// TODO(bradfitz): make it wait for readability? (Issue 15735)
return 0, nil
}
if err := fd.pd.prepareRead(fd.isFile); err != nil {
return 0, err
}
if fd.IsStream && len(p) > maxRW {
p = p[:maxRW]
}
for {
//執行read系統呼叫
n, err := syscall.Read(fd.Sysfd, p)
if err != nil {
n = 0
if err == syscall.EAGAIN && fd.pd.pollable() {
//socket fd沒有資料可讀,將協程狀態設定為wait
if err = fd.pd.waitRead(fd.isFile); err == nil {
continue
}
}
}
err = fd.eofError(n, err)
return n, err
}
}
Write的實現
internal/poll/fd_unix.go
// Write implements io.Writer.
func (fd *FD) Write(p []byte) (int, error) {
if err := fd.writeLock(); err != nil {
return 0, err
}
defer fd.writeUnlock()
if err := fd.pd.prepareWrite(fd.isFile); err != nil {
return 0, err
}
var nn int
for {
max := len(p)
if fd.IsStream && max-nn > maxRW {
max = nn + maxRW
}
//執行write系統呼叫
n, err := syscall.Write(fd.Sysfd, p[nn:max])
if n > 0 {
nn += n
}
if nn == len(p) {
return nn, err
}
if err == syscall.EAGAIN && fd.pd.pollable() {
//socket fd不可寫,將協程狀態設定為wait
if err = fd.pd.waitWrite(fd.isFile); err == nil {
continue
}
}
if err != nil {
return nn, err
}
if n == 0 {
return nn, io.ErrUnexpectedEOF
}
}
}
GPC模型總結
1 新建socket、accept的socket都設定為非阻塞
2.新建socket、accept的socket的fd都加入epoll
3. Read、Write採用迴圈讀寫,如果返回EAGAIN,將協程狀態設定為wait
4. io執行緒定期執行sysmon,通過epollWait獲取可讀寫的fd,將fd關聯的協程設定為runable