卷積網路實現cifar資料集分類
阿新 • • 發佈:2020-08-25
import tensorflow as tf import os import numpy as np from matplotlib import pyplot as plt from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Dense from tensorflow.keras import Model np.set_printoptions(threshold=np.inf) cifar10=tf.keras.datasets.cifar10 (x_train,y_train),(x_test,y_test)=cifar10.load_data() x_train=x_train/255. x_test=x_test/255. class Baseline(Model): def __init__(self): super(Baseline,self).__init__() self.c1=Conv2D(filters=6,kernel_size=(5,5),padding='same') #6個5*5卷積核 self.b1=BatchNormalization() #批標準化 self.a1=Activation('relu') self.p1=MaxPool2D(pool_size=(2,2),strides=2,padding='same') #最大值池化 self.d1=Dropout(0.2) #捨棄 self.flatter=Flatten() #資料拉直 self.f1=Dense(128,activation='relu') self.d2=Dropout(0.2) self.f2=Dense(10,activation='softmax') def call(self,x): x = self.c1(x) x = self.b1(x) x = self.a1(x) x = self.p1(x) x = self.d1(x) x = self.flatter(x) x = self.d2(x) y = self.f2(x) return y model=Baseline() model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=['sparse_categorical_accuracy']) checkpoint_save_path='./checkpoint/Baseline.ckpt' if os.path.exists(checkpoint_save_path+'.index'): print('-------load the model-------') model.load_weights(checkpoint_save_path) cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True, save_best_only=True) history=model.fit(x_train,y_train,batch_size=32,epochs=5,validation_data=(x_test,y_test),validation_freq=1, callbacks=[cp_callback]) model.summary() file=open('./weights.txt','w') for v in model.trainable_variables: file.write(str(v.name)+'\n') file.write(str(v.shape) + '\n') file.write(str(v.numpy()) + '\n') file.close() ##########show########### acc=history.history['sparse_categorical_accuracy'] val_acc=history.history['val_sparse_categorical_accuracy'] loss=history.history['loss'] val_loss=history.history['val_loss'] plt.subplot(1,2,1) plt.plot(acc,label='Training Accuracy') plt.plot(val_acc,label='Validation Accuracy') plt.title('Training and Validation Accuracy') plt.legend() plt.subplot(1,2,2) plt.plot(loss,label='Training Loss') plt.plot(val_loss,label='Validation Loss') plt.title('Training and Validation Loss') plt.legend() plt.show()