libevent原始碼解析2
官方示例
/* For sockaddr_in */ #include <netinet/in.h> /* For socket functions */ #include <sys/socket.h> /* For fcntl */ #include <fcntl.h> #include <event2/event.h> #include <assert.h> #include <unistd.h> #include <string.h> #include <stdlib.h> #include <stdio.h> #include <errno.h> #define MAX_LINE 16384 void do_read(evutil_socket_t fd, short events, void *arg); void do_write(evutil_socket_t fd, short events, void *arg); char rot13_char(char c) { /* We don't want to use isalpha here; setting the locale would change * which characters are considered alphabetical. */ if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M')) return c + 13; else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z')) return c - 13; else return c; } struct fd_state { char buffer[MAX_LINE]; size_t buffer_used; size_t n_written; size_t write_upto; struct event *read_event; struct event *write_event; }; struct fd_state * alloc_fd_state(struct event_base *base, evutil_socket_t fd) { struct fd_state *state = malloc(sizeof(struct fd_state)); if (!state) return NULL; state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state); if (!state->read_event) { free(state); return NULL; } state->write_event = event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state); if (!state->write_event) { event_free(state->read_event); free(state); return NULL; } state->buffer_used = state->n_written = state->write_upto = 0; assert(state->write_event); return state; } void free_fd_state(struct fd_state *state) { event_free(state->read_event); event_free(state->write_event); free(state); } void do_read(evutil_socket_t fd, short events, void *arg) { struct fd_state *state = arg; char buf[1024]; int i; ssize_t result; while (1) { assert(state->write_event); result = recv(fd, buf, sizeof(buf), 0); if (result <= 0) break; for (i=0; i < result; ++i) { if (state->buffer_used < sizeof(state->buffer)) state->buffer[state->buffer_used++] = rot13_char(buf[i]); if (buf[i] == '\n') { assert(state->write_event); event_add(state->write_event, NULL); state->write_upto = state->buffer_used; } } } if (result == 0) { free_fd_state(state); } else if (result < 0) { if (errno == EAGAIN) // XXXX use evutil macro return; perror("recv"); free_fd_state(state); } } void do_write(evutil_socket_t fd, short events, void *arg) { struct fd_state *state = arg; while (state->n_written < state->write_upto) { ssize_t result = send(fd, state->buffer + state->n_written, state->write_upto - state->n_written, 0); if (result < 0) { if (errno == EAGAIN) // XXX use evutil macro return; free_fd_state(state); return; } assert(result != 0); state->n_written += result; } if (state->n_written == state->buffer_used) state->n_written = state->write_upto = state->buffer_used = 1; event_del(state->write_event); } void do_accept(evutil_socket_t listener, short event, void *arg) { struct event_base *base = arg; struct sockaddr_storage ss; socklen_t slen = sizeof(ss); int fd = accept(listener, (struct sockaddr*)&ss, &slen); if (fd < 0) { // XXXX eagain?? perror("accept"); } else if (fd > FD_SETSIZE) { close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */ } else { struct fd_state *state; evutil_make_socket_nonblocking(fd); state = alloc_fd_state(base, fd); assert(state); /*XXX err*/ assert(state->write_event); event_add(state->read_event, NULL); } } void run(void) { evutil_socket_t listener; struct sockaddr_in sin; struct event_base *base; struct event *listener_event; base = event_base_new(); if (!base) return; /*XXXerr*/ sin.sin_family = AF_INET; sin.sin_addr.s_addr = 0; sin.sin_port = htons(40713); listener = socket(AF_INET, SOCK_STREAM, 0); evutil_make_socket_nonblocking(listener); #ifndef WIN32 { int one = 1; setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)); } #endif if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) { perror("bind"); return; } if (listen(listener, 16)<0) { perror("listen"); return; } listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base); /*XXX check it */ event_add(listener_event, NULL); event_base_dispatch(base); } int main(int c, char **v) { setvbuf(stdout, NULL, _IONBF, 0); run(); return 0; }
上一節,我們介紹了從開始,建立event base,到最後分發訊息。這一節我們介紹一下,具體的,收到監聽,傳送訊息和接收訊息。
回撥流程
寫服務端程式,肯定是先建立監聽socket,然後等待連結進來,連結進來後,我們儲存起來,進行收發訊息。對於libevent封裝後,我們看一下,連結是怎麼進來的。
首先在上面的程式中,還是先建立socket,繫結埠,開啟監聽,然後建立event,與socket繫結,新增到event base中,開啟分發。
建立event的時候,在event_new中,綁定了event base,event,socket,監聽事件,回撥介面和回撥引數。
呼叫event_base_dispatch分發事件。然後就沒有額外的程式碼了,這就說明event_base_dispatch是一個迴圈,等待事件的到來,我們跟蹤一下如何在呼叫了event_base_dispatch之後,到達事件後,可以回撥到傳入的回撥函式,比如上面的do_accept do_read do_write。
event_base_dispatch->event_base_loop->event_process_active->event_process_active_single_queue
上面就是事件回撥呼叫堆疊,先是event_base_dispatch,然後具體呼叫在event_base_loop,獲得事件後,呼叫event_process_active,做了一些處理,最終呼叫event_process_active_single_queue,在這個函式中,根據不同的事件,呼叫儲存的對應的回撥函式。
整體流程就是先建立一個event base,event base根據系統的不同選擇不同的IO模型,linux下選擇epoll,也就是呼叫epoll_wait。然後建立監聽socket,繫結一個event,新增到主迴圈,呼叫epoll_ctl。在event_base_dispatch中,呼叫epoll_wait等待事件到達。到達後,根據傳入的回撥函式,執行回撥。