1. 程式人生 > 程式設計 >Pytorch的mean和std調查例項

Pytorch的mean和std調查例項

如下所示:

# coding: utf-8

from __future__ import print_function
import copy
import click
import cv2
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import models,transforms

import matplotlib.pyplot as plt
import load_caffemodel
import scipy.io as sio

# if model has LSTM
# torch.backends.cudnn.enabled = False

imgpath = 'D:/ck/files_detected_face224/'   

imgname = 'S055_002_00000025.png' # anger
image_path = imgpath + imgname

mean_file = [0.485,0.456,0.406]
std_file = [0.229,0.224,0.225]
raw_image = cv2.imread(image_path)[...,::-1]
print(raw_image.shape)
raw_image = cv2.resize(raw_image,(224,) * 2)
image = transforms.Compose([
  transforms.ToTensor(),transforms.Normalize(
    mean=mean_file,std =std_file,#mean = mean_file,#std = std_file,)
])(raw_image).unsqueeze(0)

print(image.shape)

convert_image1 = image.numpy()
convert_image1 = np.squeeze(convert_image1) # 3* 224 *224,C * H * W
convert_image1 = convert_image1 * np.reshape(std_file,(3,1,1)) + np.reshape(mean_file,1))
convert_image1 = np.transpose(convert_image1,(1,2,0)) # H * W * C
print(convert_image1.shape)

convert_image1 = convert_image1 * 255

diff = raw_image - convert_image1
err = np.max(diff)
print(err)
plt.imshow(np.uint8(convert_image1))
plt.show()

結論:

input_image = (raw_image / 255 - mean) ./ std 

下面調查均值檔案和方差檔案是如何生成的:

mean_file = [0.485,0.225]
# coding: utf-8
import matplotlib.pyplot as plt
import argparse
import os
import numpy as np
import torchvision
import torchvision.transforms as transforms

dataset_names = ('cifar10','cifar100','mnist')

parser = argparse.ArgumentParser(description='PyTorchLab')
parser.add_argument('-d','--dataset',metavar='DATA',default='cifar10',choices=dataset_names,help='dataset to be used: ' + ' | '.join(dataset_names) + ' (default: cifar10)')

args = parser.parse_args()

data_dir = os.path.join('.',args.dataset)

print(args.dataset)
args.dataset = 'cifar10'
if args.dataset == "cifar10":
  train_transform = transforms.Compose([transforms.ToTensor()])
  train_set = torchvision.datasets.CIFAR10(root=data_dir,train=True,download=True,transform=train_transform)
  #print(vars(train_set))
  print(train_set.train_data.shape)
  print(train_set.train_data.mean(axis=(0,2))/255)
  print(train_set.train_data.std(axis=(0,2))/255)

  # imshow image
  train_data = train_set.train_data
  ind = 100
  img0 = train_data[ind,...]
  ## test channel number,in total,the correct channel is : RGB,not like BGR in caffe
  # error produce
  #b,g,r=cv2.split(img0)
  #img0=cv2.merge([r,b])

  print(img0.shape)
  print(type(img0))
  plt.imshow(img0)
  plt.show() # in ship in sea

  #img0 = cv2.resize(img0,224))
  #cv2.imshow('img0',img0)
  #cv2.waitKey()

elif args.dataset == "cifar100":
  train_transform = transforms.Compose([transforms.ToTensor()])
  train_set = torchvision.datasets.CIFAR100(root=data_dir,transform=train_transform)
  #print(vars(train_set))
  print(train_set.train_data.shape)
  print(np.mean(train_set.train_data,axis=(0,2))/255)
  print(np.std(train_set.train_data,2))/255)

elif args.dataset == "mnist":
  train_transform = transforms.Compose([transforms.ToTensor()])
  train_set = torchvision.datasets.MNIST(root=data_dir,transform=train_transform)
  #print(vars(train_set))
  print(list(train_set.train_data.size()))
  print(train_set.train_data.float().mean()/255)
  print(train_set.train_data.float().std()/255)

結果:

cifar10
Files already downloaded and verified
(50000,32,3)
[ 0.49139968 0.48215841 0.44653091]
[ 0.24703223 0.24348513 0.26158784]
(32,3)
<class 'numpy.ndarray'>

使用matlab檢測是如何計算mean_file和std_file的:

% load cifar10 dataset

data = load('cifar10_train_data.mat');
train_data = data.train_data;
disp(size(train_data));

temp = mean(train_data,1);
disp(size(temp));

train_data = double(train_data);

% compute mean_file 
mean_val = mean(mean(mean(train_data,1),2),3)/255;


% compute std_file 
temp1 = train_data(:,:,1);
std_val1 = std(temp1(:))/255;

temp2 = train_data(:,2);
std_val2 = std(temp2(:))/255;

temp3 = train_data(:,3);
std_val3 = std(temp3(:))/255;

mean_val = squeeze(mean_val);
std_val = [std_val1,std_val2,std_val3];

disp(mean_val);
disp(std_val);

% result: mean_val: [0.4914,0.4822,0.4465]
%     std_val: [0.2470,0.2435,0.2616]

均值計算的過程也可以遵循標準差的計算過程。為 了簡單,例如對於一個矩陣,所有元素的均值,等於兩個方向上先後均值。所以會直接採用如下的形式:

mean_val = mean(mean(mean(train_data,3)/255;

標準差的計算是每一個通道的對所有樣本的求標準差。然後再除以255。

以上這篇Pytorch的mean和std調查例項就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支援我們。