基於GPU的HPL基準測試
阿新 • • 發佈:2020-09-12
1、配置GCC編譯器
# yum install gcc gcc-c++ gcc-gfortran glibc glibc-devel make -y
2、安裝Intel MKL
# wget http://registrationcenter-download.intel.com/akdlm/irc_nas/tec/15816/l_mkl_2019.5.281.tgz # tar zxvf l_mkl_2019.5.281.tgz # cd l_mkl_2019.5.281 # sh install.sh
配置MKL環境變數
# source /opt/intel/compilers_and_libraries_2019.5.281/linux/mkl/bin/mklvars.sh intel64
3、安裝MPICH
# yum install -y mpich-3.2 mpich-3.2-devel # export PATH=/usr/lib64/mpich-3.2/bin:$PATH
4、安裝CUDA
安裝kernel-devel包
# yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r)
禁用Nouveau驅動
# lsmod |grep nouveau # modprobe -r nouveau # cat > /etc/modprobe.d/blacklist.conf << EOF blacklist nouveau options nouveau modeset=0 EOF
安裝CUDA
# yum install -y cuda-10-2
檢視GPU狀態
# nvidia-smi
5、安裝HPL
# https://files.cnblogs.com/files/liu-shaobo/hpl-2.0_FERMI_v15.tar.gz # tar zxvf hpl-2.0_FERMI_v15.tgz # mv hpl-2.0_FERMI_v15 hpl_gpu && cd hpl_gpu # cp Make.CUDA Make.CUDA.bak # sed -i 's#^TOPdir.*#TOPdir = /root/hpl_gpu#' Make.CUDA # sed-i 's#^LAdir.*#LAdir = /opt/intel/mkl/lib/intel64#' Make.CUDA # sed -i 's#^LAMP5dir.*#LAMP5dir = /opt/intel/compilers_and_libraries/linux/lib/intel64#' Make.CUDA # sed -i 's#^LAinc.*#LAinc = -I/opt/intel/mkl/include#' Make.CUDA
編譯HPL
# make arch=CUDA
6、測試
# cd bin/CUDA # sed -i 's#^HPL_DIR.*#HPL_DIR=/root/hpl_gpu' run_linpack
# mpirun -np 1 ./run_linpack > HPL-Benchmark.txt
因為只有單卡GPU,將HPL.dat的PxQ都改成1測試