poj2002 哈希
阿新 • • 發佈:2017-06-11
each same for -s ext oss mod rip ios
Squares
So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates.
The input consists of a number of test cases. Each test case starts with the integer n (1 <= n <= 1000) indicating the number of points to follow. Each of the next n lines specify the x and y coordinates (two integers) of each
point. You may assume that the points are distinct and the magnitudes of the coordinates are less than 20000. The input is terminated when n = 0.
For each test case, print on a line the number of squares one can form from the given stars.
但這樣的做法會使同一個正方形依照不同的順序被枚舉了四次。因此最後的結果要除以4.
能夠用向量坐標來證明 對角線上倆坐標已知求還有一條對角線坐標
Time Limit: 3500MS | Memory Limit: 65536K | |
Total Submissions: 17666 | Accepted: 6735 |
Description
A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that rotating about its centre by 90 degrees gives the same polygon. It is not the only polygon with the latter property, however, as a regular octagon also has this property.So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates.
Input
Output
Sample Input
4 1 0 0 1 1 1 0 0 9 0 0 1 0 2 0 0 2 1 2 2 2 0 1 1 1 2 1 4 -2 5 3 7 0 0 5 2 0
Sample Output
1 6 1
Source
先枚舉兩個點,通過數學公式得到另外2個點,使得這四個點可以成正方形。然後檢查散點集中是否存在計算出來的那兩個點,若存在,說明有一個正方形。
已知: (x1,y1) (x2,y2)
則: x3=x1+(y1-y2) y3= y1-(x1-x2)
x4=x2+(y1-y2) y4= y2-(x1-x2)
或
x3=x1-(y1-y2) y3= y1+(x1-x2)
x4=x2-(y1-y2) y4= y2+(x1-x2)
能夠用向量坐標來證明 對角線上倆坐標已知求還有一條對角線坐標
標記點x y時,key = (x^2+y^2)%prime
解決的地址沖突的方法,我使用了 鏈地址法
#include<iostream> //1500K 1000MS #include<cstdio> #include<cstring> #include<cmath> #define F 19999 using namespace std; struct zuo { int x,y; } p[20001]; struct node { int x,y; node *next; }*head[20001]; int n; int KK(zuo p1) { int key=(p1.x*p1.x+p1.y*p1.y)%F; return key; } int Build(int k) //建立 { int key=KK(p[k]); if(!head[key]) { head[key]=new node; head[key]->next=NULL; node *q; q=new node; q->x=p[k].x; q->y=p[k].y; q->next=NULL; head[key]->next=q; } else { node *q,*top; top=head[key]; q=head[key]->next; while(q) { q=q->next; top=top->next; } q=new node; q->next=NULL; q->x=p[k].x; q->y=p[k].y; top->next=q; } return 0; } int Count(zuo p1,zuo p2) //統計 { int key1=KK(p1); int flag=0; int key2=KK(p2); if(head[key1]&&head[key2]) //推斷p1,p2是否在哈希表裏 { node *q=head[key1]; while(q) { if(q->x==p1.x&&q->y==p1.y) { flag=1; break; } q=q->next; } if(flag==0) return 0; else { node *q=head[key2]; while(q) { if(q->x==p2.x&&q->y==p2.y) { return 1; } q=q->next; } } } return 0; } int main() { while(~scanf("%d",&n)) { memset(head,0,sizeof(head)); if(!n) break; for(int i=0; i<n; i++) { scanf("%d%d",&p[i].x,&p[i].y); Build(i); } int num=0; for(int i=0; i<n; i++) { for(int j=i+1; j<n; j++) { zuo p1,p2; p1.x=p[i].x+(p[i].y-p[j].y); p1.y=p[i].y-(p[i].x-p[j].x); p2.x=p[j].x+(p[i].y-p[j].y); p2.y=p[j].y-(p[i].x-p[j].x); num+=Count(p1,p2); p1.x=p[i].x-(p[i].y-p[j].y); p1.y=p[i].y+(p[i].x-p[j].x); p2.x=p[j].x-(p[i].y-p[j].y); p2.y=p[j].y+(p[i].x-p[j].x); num+=Count(p1,p2); } } printf("%d\n",num/4); } }
poj2002 哈希