OC對象之旅 weak弱引用實現分析
Runtime源碼分析帶你了解OC實現過程。其中參考了大量的大神的代碼以及文獻裏面也有個人的見解歡迎拍磚歡迎交流。
兩種常見使用場景
/// [email protected] XX : [email protected](nonatomic,weak) Type* weakPtr;@end/// 代碼塊中使用{ /// 使用__weak __weak Type* weakPtr = [[SomeObject alloc] init]; }
根據調試信息發現兩者的區別是
第一種進入到
id objc_storeWeak(id *location, id newObj)方法
```This function stores a new value into a __weak variable. It would
be used anywhere a __weak variable is the target of an assignment.
@param location The address of the weak pointer itself
@param newObj The new object this weak ptr should now point to
@return \e newObj
/
id
objc_storeWeak(id location, id newObj)
return storeWeak
(location, (objc_object *)newObj);
}
```,>第二種繞一個遠路先初始化
id objc_initWeak(id *location, id newObj)
``` Objective-C
/**Initialize a fresh weak pointer to some object location.
It would be used for code like:
(The nil case)
__weak id weakPtr;
(The non-nil case)
NSObject *o = ...;
__weak id weakPtr = o;
This function IS NOT thread-safe with respect to concurrent
modifications to the weak variable. (Concurrent weak clear is safe.)
@param location Address of __weak ptr.
@param newObj Object ptr.
/
id objc_initWeak(id location, id newObj)
{
if (!newObj) {
*location = nil;
return nil;
}return storeWeak
(location, (objc_object*)newObj);
}
```,>兩者最終進入到如下方法
template <HaveOld haveOld, HaveNew haveNew, CrashIfDeallocating crashIfDeallocating>static idstoreWeak(id *location, objc_object *newObj) { ///略去下面會進行分析 ... return (id)newObj; }
所以重點就在 storeWeak
這個方法中let‘s do it
分析源碼
storeWeak
源碼的如下
template <HaveOld haveOld, HaveNew haveNew, CrashIfDeallocating crashIfDeallocating>static id storeWeak(id *location, objc_object *newObj) { assert(haveOld || haveNew); if (!haveNew) assert(newObj == nil); Class previouslyInitializedClass = nil; id oldObj; SideTable *oldTable; SideTable *newTable; // Acquire locks for old and new values. // Order by lock address to prevent lock ordering problems. // Retry if the old value changes underneath us. retry: if (haveOld) { oldObj = *location; oldTable = &SideTables()[oldObj]; } else { oldTable = nil; } if (haveNew) { newTable = &SideTables()[newObj]; } else { newTable = nil; } SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable); if (haveOld && *location != oldObj) { SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable); goto retry; } // Prevent a deadlock between the weak reference machinery // and the +initialize machinery by ensuring that no // weakly-referenced object has an un-+initialized isa. /// 註釋大意是通過下面操作保證所有的弱引用對象的isa都被初始化這樣可以防止死鎖PS,這裏我不是太明白求指教 if (haveNew && newObj) { /// 下面的操作是初始化isa Class cls = newObj->getIsa(); if (cls != previouslyInitializedClass && !((objc_class *)cls)->isInitialized()) { SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable); _class_initialize(_class_getNonMetaClass(cls, (id)newObj)); // If this class is finished with +initialize then we‘re good. // If this class is still running +initialize on this thread // (i.e. +initialize called storeWeak on an instance of itself) // then we may proceed but it will appear initializing and // not yet initialized to the check above. // Instead set previouslyInitializedClass to recognize it on retry. previouslyInitializedClass = cls; goto retry; } } // Clean up old value, if any. if (haveOld) { weak_unregister_no_lock(&oldTable->weak_table, oldObj, location); } // Assign new value, if any. if (haveNew) { newObj = (objc_object *) weak_register_no_lock(&newTable->weak_table, (id)newObj, location, crashIfDeallocating); // weak_register_no_lock returns nil if weak store should be rejected // Set is-weakly-referenced bit in refcount table. if (newObj && !newObj->isTaggedPointer()) { newObj->setWeaklyReferenced_nolock(); } // Do not set *location anywhere else. That would introduce a race. *location = (id)newObj; } else { // No new value. The storage is not changed. } SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable); return (id)newObj; }
template
是C++的一種泛型實現相當於這裏申明了變量或者類型可以在代碼塊中使用用於處理不同的未知類型&枚舉。haveOld 弱引用是否已經有所指向
haveNew 是否有新的指向
CrashIfDeallocating 執行方法時發生Deallocate是否Crash
PS:初始化ISA那部分為何能阻止死鎖我沒有看懂
該函數流程如下
重點來了
/// SideTablesoldTable = &SideTables()[oldObj]; newTable = &SideTables()[newObj];/// taggedPointer是什麽鬼isTaggedPointer/// 註冊弱引用weak_register_no_lock(&newTable->weak_table, (id)newObj, location,crashIfDeallocating);/// 消除弱引用weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
SideTable
SideTable
是一個結構體定義如下
struct SideTable { spinlock_t slock; RefcountMap refcnts; weak_table_t weak_table; SideTable() { memset(&weak_table, 0, sizeof(weak_table)); } ~SideTable() { _objc_fatal("Do not delete SideTable."); } ///鎖 .... };
spinlock_t solck 鎖
RefcountMap refcnts 強引用使用略過
weak_table_t weak_table 弱引用表
SideTable
是存放引用關系的對象通過Hash值操作在SideTableBuf
中尋找與之對應的SideTable
SideTableBuf
初始化過程如下alignas(StripedMap<SideTable>) static uint8_t SideTableBuf[sizeof(StripedMap<SideTable>)];/// 會在Objc_init中調用該方法static void SideTableInit() {/// 這句話貌似沒什麽卵用求指教new (SideTableBuf) StripedMap<SideTable>(); }/// 尋找SideTablestatic StripedMap<SideTable>& SideTables() {return *reinterpret_cast<StripedMap<SideTable>*>(SideTableBuf); }
StripedMap
是一個泛型類並重寫了[]運算符通過對象的地址運算出Hash值通過該hash值找到對象的SideTable
```
template
class StripedMap {
enum { CacheLineSize = 64 };if TARGET_OS_EMBEDDED
enum { StripeCount = 8 };
else
enum { StripeCount = 64 };
endif
struct PaddedT {
T value alignas(CacheLineSize);
};
PaddedT array[StripeCount];
/// 運算
static unsigned int indexForPointer(const void *p) {
uintptr_t addr = reinterpret_cast(p);
/// 位運算可以控制返回值在0-63之間
return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
}
public:
T& operator[] (const void *p) {
return array[indexForPointer(p)].value;
}
/// 下面略去
...
}
### taggedPointer簡單的說這是一種優化手段即將對象的值存入對象的地址中這些工程師簡直喪心病狂就為了省一點內存嘛### 進入正題看看怎麽實現弱引用的先看看註冊的過程吧
/**
Registers a new (object, weak pointer) pair. Creates a new weak
object entry if it does not exist.
@param weak_table The global weak table.
@param referent The object pointed to by the weak reference.
@param referrer The weak pointer address.
/
id weak_register_no_lock(weak_table_t weak_table, id referent_id,
id referrer_id, bool crashIfDeallocating)
{
/// 轉化為object
objc_object referent = (objc_object *)referent_id;
objc_object referrer = (objc_object )referrer_id;
/// 如果是taggedPointer,就沒有引用的過程了
if (!referent || referent->isTaggedPointer()) return referent_id;// ensure that the referenced object is viable
bool deallocating;
if (!referent->ISA()->hasCustomRR()) {
deallocating = referent->rootIsDeallocating();
}
else {
BOOL (allowsWeakReference)(objc_object , SEL) =
(BOOL()(objc_object , SEL))
object_getMethodImplementation((id)referent,
SEL_allowsWeakReference);
if ((IMP)allowsWeakReference == _objc_msgForward) {
return nil;
}
deallocating =
! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
}
/// 如果正在被銷毀
if (deallocating) {
if (crashIfDeallocating) {
_objc_fatal("Cannot form weak reference to instance (%p) of "
"class %s. It is possible that this object was "
"over-released, or is in the process of deallocation.",
(void*)referent, object_getClassName((id)referent));
} else {
return nil;
}
}// now remember it and where it is being stored
weak_entry_t *entry;
if ((entry = weak_entry_for_referent(weak_table, referent))) {
append_referrer(entry, referrer);
}
else {
weak_entry_t new_entry(referent, referrer);
weak_grow_maybe(weak_table);
weak_entry_insert(weak_table, &new_entry);
}// Do not set *referrer. objc_storeWeak() requires that the
// value not change.return referent_id;
}
```
先從這行數的參數說起參數有4個weak_table_t *weak_table hash表
id referent_id, 弱引用對象
id *referrer_id, 弱引用指針
bool crashIfDeallocating 如果正在Deallocate是否crash
後三個參數不用解釋主要解釋第一個參數weak_table_t
,定義如下
/** * The global weak references table. Stores object ids as keys, * and weak_entry_t structs as their values. */struct weak_table_t { weak_entry_t *weak_entries; ///數組用於存儲引用對象集合 size_t num_entries; /// 存儲數目 uintptr_t mask; /// 當前分配容量 uintptr_t max_hash_displacement; /// 已使用容量};
沒錯weak_table_t
就是寄存在SideTable
中
weak_entry_t *weak_entries; ///數組用於存儲引用對象集合
size_t num_entries; /// 存儲數目
uintptr_t mask; /// 當前分配容量
uintptr_t max_hash_displacement; /// 已使用容量
定義中我們重點關註weak_entry_t
struct weak_entry_t { DisguisedPtr<objc_object> referent; union { struct { weak_referrer_t *referrers; uintptr_t out_of_line_ness : 2; uintptr_t num_refs : PTR_MINUS_2; uintptr_t mask; uintptr_t max_hash_displacement; }; struct { // out_of_line_ness field is low bits of inline_referrers[1] weak_referrer_t inline_referrers[WEAK_INLINE_COUNT]; }; }; bool out_of_line() { return (out_of_line_ness == REFERRERS_OUT_OF_LINE); } weak_entry_t& operator=(const weak_entry_t& other) { memcpy(this, &other, sizeof(other)); return *this; } weak_entry_t(objc_object *newReferent, objc_object **newReferrer) : referent(newReferent) { inline_referrers[0] = newReferrer; for (int i = 1; i < WEAK_INLINE_COUNT; i++) { inline_referrers[i] = nil; } } };
weak_entry_t
是最終存放對象和引用指針的地方referent
是被引用的對象聯合體union
釋義如下
weak_referrer_t *referrers; 存放引用指針
uintptr_t out_of_line_ness : 2 標識當前存儲是否在初始WEAK_INLINE_COUNT個數之內
uintptr_t num_refs : PTR_MINUS_2 引用的個數
uintptr_t mask; 實際分配容量
uintptr_t max_hash_displacement; 實際使用容量包括已經被釋放的每次調整容量時會更新重置
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT]; 當引用個數小於WEAK_INLINE_COUNT時使用該數組存放。
註冊引用過程中重點關註下面代碼
{ weak_entry_t *entry; /// 查找是否已經註冊過了 if ((entry = weak_entry_for_referent(weak_table, referent))) { /// 加上去就可以了 append_referrer(entry, referrer); } else { /// 新建一個 weak_entry_t new_entry(referent, referrer); /// 調整weak_table_t 的容量大小 weak_grow_maybe(weak_table); /// 插入一個 weak_entry_insert(weak_table, &new_entry); } }
新建
通過weak_entry_t
的源碼可以看到新建一個weak_entry_t
的過程是
將被引用對象賦予referent
將引用指針放入到
inline_referrers
因為此時數目還很少
調整weak_table_t的容量大小
static void weak_resize(weak_table_t *weak_table, size_t new_size){ size_t old_size = TABLE_SIZE(weak_table); weak_entry_t *old_entries = weak_table->weak_entries; weak_entry_t *new_entries = (weak_entry_t *) calloc(new_size, sizeof(weak_entry_t)); weak_table->mask = new_size - 1; weak_table->weak_entries = new_entries; /// 重置 weak_table->max_hash_displacement = 0; weak_table->num_entries = 0; // restored by weak_entry_insert below if (old_entries) { weak_entry_t *entry; weak_entry_t *end = old_entries + old_size; for (entry = old_entries; entry < end; entry++) { if (entry->referent) { weak_entry_insert(weak_table, entry); } } free(old_entries); } }// Grow the given zone‘s table of weak references if it is full.static void weak_grow_maybe(weak_table_t *weak_table){ size_t old_size = TABLE_SIZE(weak_table); // Grow if at least 3/4 full. if (weak_table->num_entries >= old_size * 3 / 4) { weak_resize(weak_table, old_size ? old_size*2 : 64); } }
當實際的數目大於old_sizeold_size就是mask的大小+1)就去調整大小同時重置max_hash_displacement為0通過calloc函數動態分配mask個的內存然後通過循環將原有的weak_entry_t
插入到新的容器中在插入的過程中更新max_hash_displacement.
在weak_table_t
插入weak_entry_t
static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry) { weak_entry_t *weak_entries = weak_table->weak_entries; assert(weak_entries != nil); size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask); size_t index = begin; size_t hash_displacement = 0; while (weak_entries[index].referent != nil) { index = (index+1) & weak_table->mask; if (index == begin) bad_weak_table(weak_entries); hash_displacement++; } /// 把新的加進去 weak_entries[index] = *new_entry; /// 引用計數+1 weak_table->num_entries++; /// 擴容前最大占位 if (hash_displacement > weak_table->max_hash_displacement) { weak_table->max_hash_displacement = hash_displacement; } }
過程比較簡單也是利用hash處理方便後面查找。
在weak_table_t
查找對象是通過循環遍歷的方式過程如下
static weak_entry_t * weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent) { assert(referent); weak_entry_t *weak_entries = weak_table->weak_entries; if (!weak_entries) return nil; size_t begin = hash_pointer(referent) & weak_table->mask; /// 獲取hash值 size_t index = begin; size_t hash_displacement = 0; /// 循環遍歷查找 while (weak_table->weak_entries[index].referent != referent) { index = (index+1) & weak_table->mask; if (index == begin) bad_weak_table(weak_table->weak_entries); // 查找到最大的時候結束 hash_displacement++; if (hash_displacement > weak_table->max_hash_displacement) { return nil; } } return &weak_table->weak_entries[index]; }
在已有的weak_entry_t
中加入引用
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer) { /// 如果是數組,即個數比較少 if (! entry->out_of_line()) { // Try to insert inline. for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) { if (entry->inline_referrers[i] == nil) { entry->inline_referrers[i] = new_referrer; return; } } // Couldn‘t insert inline. Allocate out of line. weak_referrer_t *new_referrers = (weak_referrer_t *) calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t)); // This constructed table is invalid, but grow_refs_and_insert // will fix it and rehash it. for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) { new_referrers[i] = entry->inline_referrers[i]; } entry->referrers = new_referrers; entry->num_refs = WEAK_INLINE_COUNT; entry->out_of_line_ness = REFERRERS_OUT_OF_LINE; entry->mask = WEAK_INLINE_COUNT-1; entry->max_hash_displacement = 0; } assert(entry->out_of_line()); if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) { return grow_refs_and_insert(entry, new_referrer); } size_t begin = w_hash_pointer(new_referrer) & (entry->mask); size_t index = begin; size_t hash_displacement = 0; while (entry->referrers[index] != nil) { hash_displacement++; index = (index+1) & entry->mask; if (index == begin) bad_weak_table(entry); } if (hash_displacement > entry->max_hash_displacement) { entry->max_hash_displacement = hash_displacement; } weak_referrer_t &ref = entry->referrers[index]; ref = new_referrer; entry->num_refs++; }
該過程同在weak_table_t
中插入weak_entry_t
如出一轍要註意的是需要判斷引用的個數當引用個數大於WEAK_INLINE_COUNT時需要將原有的引用指針也移到referrers
中同時更新相關計數器。
上面過程的流程如下
OC對象之旅 weak弱引用實現分析