1. 程式人生 > >8.動態規劃(1)——字符串的編輯距離

8.動態規劃(1)——字符串的編輯距離

有一個 delete 算法導論 根據 algo img void stat pre

  動態規劃的算法題往往都是各大公司筆試題的常客。在不少算法類的微信公眾號中,關於“動態規劃”的文章屢見不鮮,都在試圖用最淺顯易懂的文字來描述講解動態規劃,甚至有的用漫畫來解釋,認真讀每一篇公眾號推送的文章實際上都能讀得懂,都能對動態規劃有一個大概了解。

  什麽是動態規劃?通俗地理解來說,一個問題的解決辦法一看就知道(窮舉),但不能一個一個數啊,你得找到最優的解決辦法,換句話說題目中就會出現類似“最多”、“最少”,“一共有多少種”等提法,這些題理論上都能使用動態規劃的思想來求解。動態規劃與分治方法類似,都是通過組合子問題的解來求解原問題,但它對每個子問題只求解一次,將其保存在表格中,無需重新計算,通常用於求解最優化問題——

《算法導論》

  編輯距離(Edit Distance),在本文指的是Levenshtein距離,也就是字符串S1通過插入、修改、刪除三種操作最少能變換成字符串S2的次數。例如:S1 = abcS2 = abf,編輯距離d = 1(只需將c修改為f)。在本文中將利用動態規劃的算法思想對字符串的編輯距離求解。

  定義:S1、S2表示兩個字符串S1(i)表示S1的第一個字符d[i, j]表示S1i個前綴到S2的第j個前綴(例如:S1 = ”abc”,S2 = ”def”,求解S1S2的編輯距離d[3, 3])。

  1.   若S1 = ”abc”, S2 = ”dec”,此時它們的編輯距離為d[3, 3] = 2,觀察兩個字符串的最後一個字符是相同的,也就是說S1(3) = S2(3)不需要做任何變換,故S1 =
    ”abc”, S2 = ”dec” <= > S1’ = ”ab”, S2’ = ”de”,即當S1[i] = S[j]d[i, j] = d[i-1,j -1]。得到公式:d[i, j] = d[i - 1, j - 1] (S1[i] = S2[j])
  2.   上面一條得出了當S1[i] = S2[j]的計算公式,顯然還有另一種情況就是S1[i] ≠ S2[j],若S1 = ”abc”, S2 = ”def”
    。S1變換到S2的過程可以修改,但還可以通過插入刪除使得S1變換為S2

    1)在S1字符串末位插入字符“f”,此時S1 = ”abcf”,S2 = ”def”,此時即S1[i] = S2[j]的情況S1變換為S2的編輯距離為d[4, 3] = d[3, 2]。所以得出d[i, j]=d[i, j - 1] + 1。(+1是因為S1新增了”f”

    2)在S2字符串末位插入字符“c”,此時S1 = ”abc”S2 = ”defc”,此時即S1[i] = S[j]的情況,S1變換為S2的編輯距離為d[3, 4] = d[2, 3]。所以得出d[i, j]=d[i - 1, j] + 1,實際上這是對S1做了刪除。(+1是因為S2新增了”c”

    3)將S1字符串末位字符修改”f”,此時S1 = ”abf”S2 = ”def”,此時即S1[i] = S[j]的情況,S1變換為S2的編輯距離為d[3, 3] = d[2, 2]。所以得出d[i, j] = d[i – 1, j - 1] + 1。(+1是因為S1修改了“c”

  綜上,得出遞推公式:

技術分享

=>

技術分享

  不妨用表格表示出動態規劃對S1=”abc”S2=“def”的求解過程。

技術分享

  可以看出紅色方塊即是最終所求的編輯距離,整個求解過程就是填滿這個表——二維數組。下面是JavaPython分別對字符串編輯距離的動態規劃求解。

  Java

  1 package com.algorithm.dynamicprogramming;
  2 
  3 /**
  4  * 動態規劃——字符串的編輯距離
  5  * s1 = "abc", s2 = "def"
  6  * 計算公式:
  7  *          | 0                                           i = 0, j = 0
  8  *          | j                                           i = 0, j > 0
  9  * d[i,j] = | i                                           i > 0, j = 0
 10  *          | min(d[i,j-1]+1, d[i-1,j]+1, d[i-1,j-1])    s1(i) = s2(j)
 11  *          | min(d[i,j-1]+1, d[i-1,j]+1, d[i-1,j-1]+1)  s1(i) ≠ s2(j)
 12  * 定義二維數組[4][4]:
 13  *      d e f            d e f
 14  *   |x|x|x|x|        |0|1|2|3|
 15  * a |x|x|x|x|  =>  a |1|1|2|3|  => 編輯距離d = [3][3] = 3
 16  * b |x|x|x|x|      b |2|2|2|3|
 17  * c |x|x|x|x|      c |3|3|3|3|
 18  *
 19  * Created by yulinfeng on 6/29/17.
 20  */
 21 public class Levenshtein {
 22 
 23     public static void main(String[] args) {
 24         String s1 = "abc";
 25         String s2 = "def";
 26         int editDistance = levenshtein(s1, s2);
 27         System.out.println("s1=" + s1 + "與s2=" + s2 + "的編輯距離為:" + editDistance);
 28     }
 29 
 30     /**
 31      * 編輯距離求解
 32      * @param s1 字符串s1
 33      * @param s2 字符串s2
 34      * @return 編輯距離
 35      */
 36     private static int levenshtein(String s1, String s2) {
 37         int i = 0;  //s1字符串中的字符下標
 38         int j = 0;  //s2字符串中的字符下標
 39         char s1i = 0;   //s1字符串第i個字符
 40         char s2j = 0;   //s2字符串第j個字符
 41         int m = s1.length();    //s1字符串長度
 42         int n = s2.length();    //s2字符串長度
 43         if (m == 0) {   //s1字符串長度為0,此時的編輯距離就是s2字符串長度
 44             return n;
 45         }
 46         if (n == 0) {
 47             return m;   //s2字符串長度為0,此時的編輯距離就是s1字符串長度
 48         }
 49         int[][] solutionMatrix = new int[m + 1][n + 1];     //求解矩陣
 50         /**
 51          *      d e f
 52          *   |0|x|x|x|
 53          * a |1|x|x|x|
 54          * b |2|x|x|x|
 55          * c |3|x|x|x|
 56          */
 57         for (i = 0; i < m + 1; i++) {
 58             solutionMatrix[i][0] = i;
 59         }
 60         /**
 61          *      d e f
 62          *   |0|1|2|3|
 63          * a |x|x|x|x|
 64          * b |x|x|x|x|
 65          * c |x|x|x|x|
 66          */
 67         for (j = 0; j < n + 1; j++) {
 68             solutionMatrix[0][j] = j;
 69         }
 70         /**
 71          * 上面兩個操作後,求解矩陣變為
 72          *      d e f
 73          *   |0|1|2|3|
 74          * a |1|x|x|x|
 75          * b |2|x|x|x|
 76          * c |3|x|x|x|
 77          * 接下來就是填充剩余表格
 78          */
 79         for (i = 1; i < m + 1; i++) {   //i = 1,j = 1, 2, 3,以行開始填充
 80             s1i = s1.charAt(i - 1);
 81             for (j = 1; j < n + 1; j++) {
 82                 s2j = s2.charAt(j - 1);
 83                 int flag = (s1i == s2j) ? 0 : 1;    //根據公式,如果s1[i] = s2[j],則d[i,j]=d[i-1,j-1],如果s1[i] ≠ s2[j],則其中一個公式為d[i,j]=d[i-1,j-1]+1
 84                 solutionMatrix[i][j] = min(solutionMatrix[i][j-1] + 1, solutionMatrix[i-1][j] + 1, solutionMatrix[i-1][j-1] + flag);
 85             }
 86         }
 87         return solutionMatrix[m][n];
 88     }
 89 
 90     /**
 91      * 根據公式求解編輯距離
 92      * @param insert s1插入操作
 93      * @param delete s1刪除操作
 94      * @param edit s1修改操作
 95      * @return 編輯距離
 96      */
 97     private static int min(int insert, int delete, int edit) {
 98         int tmp = insert < delete ? insert : delete;
 99         return tmp < edit ? tmp : edit;
100     }
101 }

  Python3

 1 ‘‘‘
 2     動態規劃——字符串的編輯距離
 3     s1 = "abc", s2 = "def"
 4     計算公式:
 5              | 0                                           i = 0, j = 0
 6              | j                                           i = 0, j > 0
 7     d[i,j] = | i                                           i > 0, j = 0
 8              | min(d[i,j-1]+1, d[i-1,j]+1, d[i-1,j-1])    s1(i) = s2(j)
 9              | min(d[i,j-1]+1, d[i-1,j]+1, d[i-1,j-1]+1)  s1(i) ≠ s2(j)
10     定義二維數組[4][4]:
11         d e f            d e f
12     |x|x|x|x|        |0|1|2|3|
13     a |x|x|x|x|  =>  a |1|1|2|3|  => 編輯距離d = [4][4] = 3
14     b |x|x|x|x|      b |2|2|2|3|
15     c |x|x|x|x|      c |3|3|3|3|
16 ‘‘‘
17 def levenshtein(s1, s2):
18     i = 0   #s1字符串中的字符下標
19     j = 0   #s2字符串中的字符下標
20     s1i = ""    #s1字符串第i個字符
21     s2j = ""    #s2字符串第j個字符
22     m = len(s1) #s1字符串長度
23     n = len(s2) #s2字符串長度
24     if m == 0:
25         return n    #s1字符串長度為0,此時的編輯距離就是s2字符串長度
26     if n == 0:
27         return m    #s2字符串長度為0,此時的編輯距離就是s1字符串長度
28     solutionMatrix = [[0 for col in range(n + 1)] for row in range(m + 1)]  #長為m+1,寬為n+1的矩陣
29     ‘‘‘
30              d e f
31           |0|x|x|x|
32         a |1|x|x|x|
33         b |2|x|x|x|
34         c |3|x|x|x|
35     ‘‘‘
36     for i in range(m + 1):
37         solutionMatrix[i][0] = i
38     ‘‘‘
39              d e f
40           |0|1|2|3|
41         a |x|x|x|x|
42         b |x|x|x|x|
43         c |x|x|x|x|
44         
45     ‘‘‘
46     for j in range(n + 1):
47         solutionMatrix[0][j] = j
48     ‘‘‘
49         上面兩個操作後,求解矩陣變為
50              d e f
51           |0|1|2|3|
52         a |1|x|x|x|
53         b |2|x|x|x|
54         c |3|x|x|x|
55         接下來就是填充剩余表格
56     ‘‘‘
57     for x in range(1, m + 1):
58         s1i = s1[x - 1]
59         for y in range(1, n + 1):
60             s2j = s2[y - 1]
61             flag = 0 if s1i == s2j  else 1
62             solutionMatrix[x][y] = min(solutionMatrix[x][y-1] + 1, solutionMatrix[x-1][y] + 1, solutionMatrix[x-1][y-1] + flag)
63 
64     return solutionMatrix[m][n]
65 
66 def min(insert, delete, edit):
67     tmp = insert if insert < delete else delete
68     return tmp if tmp < edit else edit
69 
70 s1 = "abc"
71 s2 = "def"
72 distance = levenshtein(s1, s2)
73 print(distance) 

8.動態規劃(1)——字符串的編輯距離