1. 程式人生 > >CodeChef - COUNTARI FTT+分塊

CodeChef - COUNTARI FTT+分塊

題解 triplets not itl style 都在 wap esp any

Arithmetic Progressions

Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can choose three numbers such that they are three consecutive terms of an arithmetic progression.

Meaning that, how many triplets (i, j, k) are there such that 1 ≤ i < j < k ≤ Nand Aj

- Ai = Ak - Aj.

So the triplets (2, 5, 8), (10, 8, 6), (3, 3, 3) are valid as they are three consecutive terms of an arithmetic
progression. But the triplets (2, 5, 7), (10, 6, 8) are not.

Input

First line of the input contains an integer N (3 ≤ N ≤ 100000). Then the following line contains N space separated integers A1

, A2, …, AN and they have values between 1 and 30000 (inclusive).

Output

Output the number of ways to choose a triplet such that they are three consecutive terms of an arithmetic progression.

Example

Input:
10
3 5 3 6 3 4 10 4 5 2

Output:
9

Explanation

The followings are all 9 ways to choose a triplet

1 : (i, j, k) = (1, 3, 5), (Ai, Aj, Ak) = (3, 3, 3)
2 : (i, j, k) = (1, 6, 9), (Ai, Aj, Ak) = (3, 4, 5)
3 : (i, j, k) = (1, 8, 9), (Ai, Aj, Ak) = (3, 4, 5)
4 : (i, j, k) = (3, 6, 9), (Ai, Aj, Ak) = (3, 4, 5)
5 : (i, j, k) = (3, 8, 9), (Ai, Aj, Ak) = (3, 4, 5)
6 : (i, j, k) = (4, 6, 10), (Ai, Aj, Ak) = (6, 4, 2)
7 : (i, j, k) = (4, 8, 10), (Ai, Aj, Ak) = (6, 4, 2)
8 : (i, j, k) = (5, 6, 9), (Ai, Aj, Ak) = (3, 4, 5)
9 : (i, j, k) = (5, 8, 9), (Ai, Aj, Ak) = (3, 4, 5)



題解:

    考慮分塊,分成block塊

    假設三個點都在同一塊,那麽我們就在一塊內暴力,復雜度block * ( n/block) * (n/block)

    假設其中兩個點在同一塊,那麽枚舉其中一塊的兩個點算答案,block * n/block * n/block

  ·  假設三個點都不在同一塊,枚舉中間點屬於的那一塊 剩下左邊和右邊進行 FFT, 復雜度block * (n*logn)

    

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 3e5+20, M = 1e6+10, mod = 1e9+7,inf = 2e9;


struct Complex {
    double r , i ;
    Complex () {}
    Complex ( double r , double i ) : r ( r ) , i ( i ) {}
    Complex operator + ( const Complex& t ) const {
        return Complex ( r + t.r , i + t.i ) ;
    }
    Complex operator - ( const Complex& t ) const {
        return Complex ( r - t.r , i - t.i ) ;
    }
    Complex operator * ( const Complex& t ) const {
        return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ;
    }
} ;

void FFT ( Complex y[] , int n , int rev ) {
    for ( int i = 1 , j , t , k ; i < n ; ++ i ) {
        for ( j = 0 , t = i , k = n >> 1 ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ;
        if ( i < j ) swap ( y[i] , y[j] ) ;
    }
    for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) {
        Complex wn = Complex ( cos ( rev * 2 * pi / s ) , sin ( rev * 2 * pi / s ) ) , w ( 1 , 0 ) , t ;
        for ( int k = 0 ; k < ds ; ++ k , w = w * wn ) {
            for ( int i = k ; i < n ; i += s ) {
                y[i + ds] = y[i] - ( t = w * y[i + ds] ) ;
                y[i] = y[i] + t ;
            }
        }
    }
    if ( rev == -1 ) for ( int i = 0 ; i < n ; ++ i ) y[i].r /= n ;
}
Complex s[N],t[N];

LL cnt[502][30005];
int a[N];
int n,block,pos[N];
LL vis[N];
int main() {
    while(scanf("%d",&n)!=EOF) {
        block = 1500;
        for(int i = 1; i <= n; ++i)
            pos[i] = (i-1)/block + 1;
        int mx = -1;
        for(int i = 0; i <= pos[n]; ++i)
        for(int j = 1; j <= 30000; ++j) cnt[i][j] = 0;
        for(int i = 1; i <= n; ++i) {
            scanf("%d",&a[i]);
            mx = max(mx,a[i]);
            cnt[pos[i]][a[i]]++;
        }

        for(int i = 1; i <= mx; ++i) {
            for(int j = 1; j <= pos[n]; ++j) {
                cnt[j][i] += cnt[j-1][i];
            }
        }
        int len = 1;
        while(len <= 2*mx) len<<=1;
        LL ans = 0;
        for(int k = 1; k <= pos[n]; ++k) {
            for(int i = (k-1)*block + 1; i <= min(k*block,n); ++i) {
                for(int j = i + 1; j <= min(k*block,n); ++j) {
                    if(2*a[i] - a[j] >= 1 && 2*a[i] - a[j] <= mx)
                        ans += cnt[k-1][2*a[i] - a[j]] + vis[2*a[i]-a[j]];
                    if(2*a[j] - a[i] >= 1 &&  2*a[j] - a[i] <= mx)
                        ans += cnt[pos[n]][2*a[j] - a[i]] - cnt[k][2*a[j] - a[i]];
                }
                vis[a[i]] += 1;
            }
            for(int i = (k-1)*block + 1; i <= min(k*block,n); ++i) {
                vis[a[i]] = 0;
            }

            for(int j = 0; j <= mx; ++j)
                s[j] = Complex(cnt[k-1][j],0);
            for(int j = mx+1; j < len; ++j) s[j] = Complex(0,0);

            for(int j = 0; j <= mx; ++j)
                t[j] = Complex(cnt[pos[n]][j] - cnt[k][j] , 0);
            for(int j = mx+1; j < len; ++j) t[j] = Complex(0,0);


            FFT(s,len,1);FFT(t,len,1);
            for(int j = 0; j < len; ++j) s[j] = s[j] * t[j];
            FFT(s,len,-1);

            for(int j = 1; j <= mx; ++j) {
                LL tmp = (LL)(s[2*j].r + 0.5);
                ans += tmp*(cnt[k][j] - cnt[k-1][j]);
            }
        }
        printf("%lld\n",ans);

    }
    return 0;
}

  

CodeChef - COUNTARI FTT+分塊