Caffe源代碼中Solver文件分析
Caffe源代碼(caffe version commit: 09868ac , date: 2015.08.15)中有一些重要的頭文件,這裏介紹下include/caffe/solver.hpp文件的內容:
1. include文件:
<caffe/solver.hpp>:此文件的介紹能夠參考: http://blog.csdn.net/fengbingchun/article/details/62423060
2. 模板類Solver:虛基類
3. 模板類WorkerSolver:繼承父類Solver,用於多GPU訓練時僅計算梯度
4. 模板類SGDSolver:繼承父類Solver
5. 模板類NesterovSolver:繼承SGDSolver
6. 模板類AdaGradSolver:繼承SGDSolver
7. 模板類RMSPropSolver:繼承SGDSolver
8. 模板類AdaDeltaSolver:繼承SGDSolver
9. 模板類AdamSolver:繼承SGDSolver
10. 函數GetSolver:new solver對象
Solver通過協調Net的前向判斷計算和反向梯度計算(forward inference and backward gradients),來對參數進行更新。從而達到降低loss的目的。Caffe模型的學習被分為兩個部分:由Solver進行優化、更新參數。由Net計算出loss和gradient。
solver.prototxt是一個配置文件用來告知Caffe如何對網絡進行訓練。
有了Net就能夠進行神經網絡的前後向傳播計算了。可是還缺少神經網絡的訓練和預測功能,Solver類進一步封裝了訓練和預測相關的一些功能。Solver定義了針對Net網絡模型的求解方法,記錄神經網絡的訓練過程,保存神經網絡模型參數,中斷並恢復網絡的訓練過程。自己定義Solver能夠實現不同的神經網絡求解方式。
Caffe支持的solvers包含:
(1)、Stochastic Gradient Descent(type: “SGD”)即隨機梯度下降:利用負梯度和上一次權重的更新值的線性組合來更新權重。學習率(learning rate)是負梯度的權重。
動量是上一次更新值的權重。一般將學習速率初始化為0.01。然後在訓練(training)中當loss達到穩定時,將學習速率除以一個常數(比如10),將這個過程重復多次。
對於動量一般設置為0.9,動量使weight得更新更為平緩,使學習過程更為穩定、高速。
(2)、AdaDelta(type:“AdaDelta”):是一種”魯棒的學習率方法”,同SGD一樣是一種基於梯度的優化方法。
(3)、Adaptive Gradient(type: “AdaGrad”)即自適應梯度下降,與隨機梯度下降一樣是基於梯度的優化方法。
(4)、Adam(type:“Adam”):也是一種基於梯度的優化方法。
它包含一對自適應時刻預計變量,能夠看做是AdaGrad的一種泛化形式。
(5)、Nesterov’s Accelerated Gradient(type: “Nesterov”):Nesterov提出的加速梯度下降(Nesterov’s accelerated gradient)是凸優化的一種最優算法,其收斂速度能夠達到O(1/t^2),而不是O(1/t)。
雖然在使用Caffe訓練深度神經網絡時非常難滿足O(1/t^2)收斂條件。但實際中NAG對於某些特定結構的深度學習模型仍是一個非常有效的方法。
(6)、RMSprop(type:“RMSProp”):是一種基於梯度的優化方法(同SGD相似)。
Solver:
(1)、用於優化過程的記錄、創建訓練網絡(用於學習)和測試網絡(用於評估);
(2)、通過forward和backward過程來叠代地優化和更新參數;
(3)、周期性地用測試網絡評估模型性能;
(4)、在優化過程中記錄模型和solver狀態的快照(snapshot)。
每一次叠代過程中:
(1)、調用Net的前向過程計算出輸出和loss。
(2)、調用Net的反向過程計算出梯度(loss對每層的權重w和偏置b求導)。
(3)、依據以下所講的Solver方法。利用梯度更新參數;
(4)、依據學習率(learning rate)。歷史數據和求解方法更新solver的狀態。使權重從初始化狀態逐步更新到終於的學習到的狀態。
Solvers的運行模式有CPU/GPU兩種模式。
Solver方法:用於最小化損失(loss)值。
給定一個數據集D,優化的目標是D中全部數據損失的均值,即平均損失。取得最小值。
註:以上關於Solver內容的介紹主要摘自由CaffeCN社區翻譯的《Caffe官方教程中譯本》。
<caffe/solver.hpp>文件的具體介紹例如以下:
#ifndef CAFFE_OPTIMIZATION_SOLVER_HPP_ #define CAFFE_OPTIMIZATION_SOLVER_HPP_ #include <string> #include <vector> #include "caffe/net.hpp" namespace caffe { /** * @brief An interface for classes that perform optimization on Net%s. * * Requires implementation of ApplyUpdate to compute a parameter update * given the current state of the Net parameters. */ template <typename Dtype> class Solver { // Solver模板類,虛基類 public: // 顯示構造函數, 內部會調用Init函數 explicit Solver(const SolverParameter& param, const Solver* root_solver = NULL); explicit Solver(const string& param_file, const Solver* root_solver = NULL); // 成員變量賦值,包含param_、iter_、current_step_,並調用InitTrainNet和InitTestNets函數 void Init(const SolverParameter& param); // 為成員變量net_賦值 void InitTrainNet(); // 為成員變量test_nets_賦值 void InitTestNets(); // The main entry of the solver function. In default, iter will be zero. Pass // in a non-zero iter number to resume training for a pre-trained net. // 依次調用函數Restore、Step、Snapshot,然後運行net_的前向傳播函數ForwardPrefilled,最後調用TestAll函數 virtual void Solve(const char* resume_file = NULL); inline void Solve(const string resume_file) { Solve(resume_file.c_str()); } // 重復運行net前向傳播反向傳播計算,期間會調用函數TestAll、ApplyUpdate、Snapshot及類Callback兩個成員函數 void Step(int iters); // The Restore method simply dispatches to one of the // RestoreSolverStateFrom___ protected methods. You should implement these // methods to restore the state from the appropriate snapshot type. // 載入已有的模型 void Restore(const char* resume_file); // 虛析構函數 virtual ~Solver() {} // 獲得slover parameter inline const SolverParameter& param() const { return param_; } // 獲得train Net inline shared_ptr<Net<Dtype> > net() { return net_; } // 獲得test Net inline const vector<shared_ptr<Net<Dtype> > >& test_nets() { return test_nets_; } // 獲得當前的叠代數 int iter() { return iter_; } // Invoked at specific points during an iteration // 內部Callback類,僅在多卡GPU模式下使用 class Callback { protected: virtual void on_start() = 0; virtual void on_gradients_ready() = 0; template <typename T> friend class Solver; }; // 獲得Callback const vector<Callback*>& callbacks() const { return callbacks_; } // 加入一個Callback void add_callback(Callback* value) { callbacks_.push_back(value); } protected: // Make and apply the update value for the current iteration. // 更新net的權值和偏置 virtual void ApplyUpdate() = 0; // The Solver::Snapshot function implements the basic snapshotting utility // that stores the learned net. You should implement the SnapshotSolverState() // function that produces a SolverState protocol buffer that needs to be // written to disk together with the learned net. // 快照,內部會調用SnapshotToBinaryProto或SnapshotToHDF5、SnapshotSolverState函數 void Snapshot(); // 獲取快照文件名稱 string SnapshotFilename(const string extension); // 寫proto到.caffemodel string SnapshotToBinaryProto(); // 寫proto到HDF5文件 string SnapshotToHDF5(); // The test routine // 內部會循環調用Test函數 void TestAll(); // 運行測試網絡。net前向傳播 void Test(const int test_net_id = 0); // 存儲snapshot solver state virtual void SnapshotSolverState(const string& model_filename) = 0; // 讀HDF5文件到solver state virtual void RestoreSolverStateFromHDF5(const string& state_file) = 0; // 讀二進制文件.solverstate到solver state virtual void RestoreSolverStateFromBinaryProto(const string& state_file) = 0; // dummy function,僅僅有聲明沒有實現 void DisplayOutputBlobs(const int net_id); // Caffe中類的成員變量名都帶有後綴"_"。這樣就easy區分暫時變量和類成員變量 SolverParameter param_; // solver parameter int iter_; // 當前的叠代數 int current_step_; // shared_ptr<Net<Dtype> > net_; // train net vector<shared_ptr<Net<Dtype> > > test_nets_; // test net vector<Callback*> callbacks_; // Callback // The root solver that holds root nets (actually containing shared layers) // in data parallelism const Solver* const root_solver_; // 禁止使用Solver類的拷貝和賦值操作 DISABLE_COPY_AND_ASSIGN(Solver); }; /** * @brief Solver that only computes gradients, used as worker * for multi-GPU training. */ template <typename Dtype> class WorkerSolver : public Solver<Dtype> { // 模板類WorkerSolver。繼承父類Solver public: // 顯示構造函數 explicit WorkerSolver(const SolverParameter& param, const Solver<Dtype>* root_solver = NULL) : Solver<Dtype>(param, root_solver) {} protected: void ApplyUpdate() {} void SnapshotSolverState(const string& model_filename) { LOG(FATAL) << "Should not be called on worker solver."; } void RestoreSolverStateFromBinaryProto(const string& state_file) { LOG(FATAL) << "Should not be called on worker solver."; } void RestoreSolverStateFromHDF5(const string& state_file) { LOG(FATAL) << "Should not be called on worker solver."; } }; /** * @brief Optimizes the parameters of a Net using * stochastic gradient descent (SGD) with momentum. */ template <typename Dtype> class SGDSolver : public Solver<Dtype> { // 模板類SGDSolver,繼承父類Solver public: // 顯示構造函數,調用PreSolve函數 explicit SGDSolver(const SolverParameter& param) : Solver<Dtype>(param) { PreSolve(); } explicit SGDSolver(const string& param_file) : Solver<Dtype>(param_file) { PreSolve(); } // 獲取history數據 const vector<shared_ptr<Blob<Dtype> > >& history() { return history_; } protected: // 成員變量history_, update_, temp_初始化 void PreSolve(); // 獲取學習率 Dtype GetLearningRate(); // 內部會調用ClipGradients、Normalize、Regularize、ComputeUpdateValue,更新net權值和偏置 virtual void ApplyUpdate(); // 調用caffe_scal函數 virtual void Normalize(int param_id); // 調用caffe_axpy函數 virtual void Regularize(int param_id); // 計算並更新對應Blob值,調用caffe_cpu_axpby和caffe_copy函數 virtual void ComputeUpdateValue(int param_id, Dtype rate); // clip parameter gradients to that L2 norm,假設梯度值過大,就會對梯度做一個修剪。 // 對全部的參數乘以一個縮放因子,使得全部參數的平方和不超過參數中設定的梯度總值 virtual void ClipGradients(); // 存儲snapshot solver state,內部會掉用SnapshotSolverStateToBinaryProto或SnapshotSolverStateToHDF5函數 virtual void SnapshotSolverState(const string& model_filename); // 寫solver state到二進制文件.solverstate virtual void SnapshotSolverStateToBinaryProto(const string& model_filename); // 寫solver state到HDF5 virtual void SnapshotSolverStateToHDF5(const string& model_filename); // 讀HDF5文件到solver state virtual void RestoreSolverStateFromHDF5(const string& state_file); // 讀二進制文件.solverstate到solver state virtual void RestoreSolverStateFromBinaryProto(const string& state_file); // history maintains the historical momentum data. // update maintains update related data and is not needed in snapshots. // temp maintains other information that might be needed in computation // of gradients/updates and is not needed in snapshots // Caffe中類的成員變量名都帶有後綴"_",這樣就easy區分暫時變量和類成員變量 vector<shared_ptr<Blob<Dtype> > > history_, update_, temp_; // 禁止使用SGDSolver類的拷貝和賦值操作 DISABLE_COPY_AND_ASSIGN(SGDSolver); }; template <typename Dtype> class NesterovSolver : public SGDSolver<Dtype> { // 模板類NesterovSolver,繼承SGDSolver public: // 顯示構造函數 explicit NesterovSolver(const SolverParameter& param) : SGDSolver<Dtype>(param) {} explicit NesterovSolver(const string& param_file) : SGDSolver<Dtype>(param_file) {} protected: // 計算並更新對應Blob值,調用caffe_cpu_axpby和caffe_copy函數 virtual void ComputeUpdateValue(int param_id, Dtype rate); // 禁止使用NesterovSolver類的拷貝和賦值操作 DISABLE_COPY_AND_ASSIGN(NesterovSolver); }; template <typename Dtype> class AdaGradSolver : public SGDSolver<Dtype> { // 模板類AdaGradSolver,繼承SGDSolver public: // 顯示構造函數,調用constuctor_sanity_check函數 explicit AdaGradSolver(const SolverParameter& param) : SGDSolver<Dtype>(param) { constructor_sanity_check(); } explicit AdaGradSolver(const string& param_file) : SGDSolver<Dtype>(param_file) { constructor_sanity_check(); } protected: // 計算並更新對應Blob值 virtual void ComputeUpdateValue(int param_id, Dtype rate); void constructor_sanity_check() { CHECK_EQ(0, this->param_.momentum()) << "Momentum cannot be used with AdaGrad."; } // 禁止使用AdaGradSolver類的拷貝和賦值操作 DISABLE_COPY_AND_ASSIGN(AdaGradSolver); }; template <typename Dtype> class RMSPropSolver : public SGDSolver<Dtype> { // 模板類RMSPropSolver,繼承SGDSolver public: // 顯示構造函數。調用constructor_sanity_check函數 explicit RMSPropSolver(const SolverParameter& param) : SGDSolver<Dtype>(param) { constructor_sanity_check(); } explicit RMSPropSolver(const string& param_file) : SGDSolver<Dtype>(param_file) { constructor_sanity_check(); } protected: // 計算並更新對應Blob值 virtual void ComputeUpdateValue(int param_id, Dtype rate); void constructor_sanity_check() { CHECK_EQ(0, this->param_.momentum()) << "Momentum cannot be used with RMSProp."; CHECK_GE(this->param_.rms_decay(), 0) << "rms_decay should lie between 0 and 1."; CHECK_LT(this->param_.rms_decay(), 1) << "rms_decay should lie between 0 and 1."; } // 禁止使用RMSPropSolver類的拷貝和賦值操作 DISABLE_COPY_AND_ASSIGN(RMSPropSolver); }; template <typename Dtype> class AdaDeltaSolver : public SGDSolver<Dtype> { // 模板類AdaDeltaSolver。繼承SGDSolver public: // 顯示構造函數,調用AdaDeltaPreSolve函數 explicit AdaDeltaSolver(const SolverParameter& param) : SGDSolver<Dtype>(param) { AdaDeltaPreSolve(); } explicit AdaDeltaSolver(const string& param_file) : SGDSolver<Dtype>(param_file) { AdaDeltaPreSolve(); } protected: void AdaDeltaPreSolve(); // 計算並更新對應Blob值 virtual void ComputeUpdateValue(int param_id, Dtype rate); // 禁止使用AdaDeltaSolver類的拷貝和賦值操作 DISABLE_COPY_AND_ASSIGN(AdaDeltaSolver); }; /** * @brief AdamSolver, an algorithm for first-order gradient-based optimization * of stochastic objective functions, based on adaptive estimates of * lower-order moments. Described in [1]. * * [1] D. P. Kingma and J. L. Ba, "ADAM: A Method for Stochastic Optimization." * arXiv preprint arXiv:1412.6980v8 (2014). */ template <typename Dtype> class AdamSolver : public SGDSolver<Dtype> { // 模板類AdamSolver。繼承SGDSolver public: // 顯示構造函數,調用AdamPreSolve函數 explicit AdamSolver(const SolverParameter& param) : SGDSolver<Dtype>(param) { AdamPreSolve();} explicit AdamSolver(const string& param_file) : SGDSolver<Dtype>(param_file) { AdamPreSolve(); } protected: void AdamPreSolve(); // 計算並更新對應Blob值 virtual void ComputeUpdateValue(int param_id, Dtype rate); // 禁止使用AdamSolver類的拷貝和賦值操作 DISABLE_COPY_AND_ASSIGN(AdamSolver); }; // new一個指定的solver方法對象 template <typename Dtype> Solver<Dtype>* GetSolver(const SolverParameter& param) { SolverParameter_SolverType type = param.solver_type(); switch (type) { case SolverParameter_SolverType_SGD: return new SGDSolver<Dtype>(param); case SolverParameter_SolverType_NESTEROV: return new NesterovSolver<Dtype>(param); case SolverParameter_SolverType_ADAGRAD: return new AdaGradSolver<Dtype>(param); case SolverParameter_SolverType_RMSPROP: return new RMSPropSolver<Dtype>(param); case SolverParameter_SolverType_ADADELTA: return new AdaDeltaSolver<Dtype>(param); case SolverParameter_SolverType_ADAM: return new AdamSolver<Dtype>(param); default: LOG(FATAL) << "Unknown SolverType: " << type; } return (Solver<Dtype>*) NULL; } } // namespace caffe #endif // CAFFE_OPTIMIZATION_SOLVER_HPP_在caffe.proto文件裏。主要有一個message是與solver相關的,例如以下:
// NOTE // Update the next available ID when you add a new SolverParameter field. // // SolverParameter next available ID: 40 (last added: momentum2) message SolverParameter { // Solver參數 ////////////////////////////////////////////////////////////////////////////// // Specifying the train and test networks // // Exactly one train net must be specified using one of the following fields: // train_net_param, train_net, net_param, net // One or more test nets may be specified using any of the following fields: // test_net_param, test_net, net_param, net // If more than one test net field is specified (e.g., both net and // test_net are specified), they will be evaluated in the field order given // above: (1) test_net_param, (2) test_net, (3) net_param/net. // A test_iter must be specified for each test_net. // A test_level and/or a test_stage may also be specified for each test_net. ////////////////////////////////////////////////////////////////////////////// // Proto filename for the train net, possibly combined with one or more test nets. optional string net = 24; // .prototxt文件名稱, train or test net // Inline train net param, possibly combined with one or more test nets. optional NetParameter net_param = 25; // net parameter類 optional string train_net = 1; // Proto filename for the train net, .prototxt文件名稱,train net repeated string test_net = 2; // Proto filenames for the test nets, .prototxt文件名稱,test net optional NetParameter train_net_param = 21; // Inline train net params, train net parameter類 repeated NetParameter test_net_param = 22; // Inline test net params, test net parameter類 // The states for the train/test nets. Must be unspecified or // specified once per net. // // By default, all states will have solver = true; // train_state will have phase = TRAIN, // and all test_state‘s will have phase = TEST. // Other defaults are set according to the NetState defaults. optional NetState train_state = 26; // train net state repeated NetState test_state = 27; // test net state // The number of iterations for each test net. repeated int32 test_iter = 3; // 對於測試網絡(用於評估)運行一次須要叠代的次數, test_iter * batch_size = 測試圖像總數量 // The number of iterations between two testing phases. optional int32 test_interval = 4 [default = 0]; // 指定運行多少次訓練網絡運行一次測試網絡 optional bool test_compute_loss = 19 [default = false]; // 運行測試網絡時是否計算loss // If true, run an initial test pass before the first iteration, // ensuring memory availability and printing the starting value of the loss. optional bool test_initialization = 32 [default = true]; // 在總的開始前,是否先運行一次測試網絡 optional float base_lr = 5; // The base learning rate,基礎學習率 // the number of iterations between displaying info. If display = 0, no info // will be displayed. optional int32 display = 6; // 指定叠代多少次顯示一次結果信息 // Display the loss averaged over the last average_loss iterations optional int32 average_loss = 33 [default = 1]; // optional int32 max_iter = 7; // the maximum number of iterations // accumulate gradients over `iter_size` x `batch_size` instances optional int32 iter_size = 36 [default = 1]; // // The learning rate decay policy. The currently implemented learning rate // policies are as follows: // 學習率衰減策略 // - fixed: always return base_lr. // - step: return base_lr * gamma ^ (floor(iter / step)) // - exp: return base_lr * gamma ^ iter // - inv: return base_lr * (1 + gamma * iter) ^ (- power) // - multistep: similar to step but it allows non uniform steps defined by // stepvalue // - poly: the effective learning rate follows a polynomial decay, to be // zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power) // - sigmoid: the effective learning rate follows a sigmod decay // return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize)))) // // where base_lr, max_iter, gamma, step, stepvalue and power are defined // in the solver parameter protocol buffer, and iter is the current iteration. optional string lr_policy = 8; // 學習策略,可取的值包含:fixed、step、exp、inv、multistep、poly、sigmoid optional float gamma = 9; // The parameter to compute the learning rate. optional float power = 10; // The parameter to compute the learning rate. optional float momentum = 11; // The momentum value, 動量 optional float weight_decay = 12; // The weight decay. // // regularization types supported: L1 and L2 // controlled by weight_decay optional string regularization_type = 29 [default = "L2"]; // L1 or L2 // the stepsize for learning rate policy "step" optional int32 stepsize = 13; // // the stepsize for learning rate policy "multistep" repeated int32 stepvalue = 34; // // Set clip_gradients to >= 0 to clip parameter gradients to that L2 norm, // whenever their actual L2 norm is larger. optional float clip_gradients = 35 [default = -1]; // optional int32 snapshot = 14 [default = 0]; // The snapshot interval, 叠代多少次保存下結果(如權值、偏置) optional string snapshot_prefix = 15; // The prefix for the snapshot,指定保存文件名稱的前綴 // whether to snapshot diff in the results or not. Snapshotting diff will help // debugging but the final protocol buffer size will be much larger. optional bool snapshot_diff = 16 [default = false]; // enum SnapshotFormat { HDF5 = 0; BINARYPROTO = 1; } optional SnapshotFormat snapshot_format = 37 [default = BINARYPROTO]; // HDF5 or BINARYPROTO // the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default. enum SolverMode { CPU = 0; GPU = 1; } optional SolverMode solver_mode = 17 [default = GPU]; // 指定solve mode是CPU還是GPU // the device_id will that be used in GPU mode. Use device_id = 0 in default. optional int32 device_id = 18 [default = 0]; // GPU mode下使用 // If non-negative, the seed with which the Solver will initialize the Caffe // random number generator -- useful for reproducible results. Otherwise, // (and by default) initialize using a seed derived from the system clock. optional int64 random_seed = 20 [default = -1]; // // Solver type enum SolverType { // solver優化方法 SGD = 0; NESTEROV = 1; ADAGRAD = 2; RMSPROP = 3; ADADELTA = 4; ADAM = 5; } optional SolverType solver_type = 30 [default = SGD]; // 指定solver優化方法 // numerical stability for RMSProp, AdaGrad and AdaDelta and Adam optional float delta = 31 [default = 1e-8]; // // parameters for the Adam solver optional float momentum2 = 39 [default = 0.999]; // // RMSProp decay value // MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t) optional float rms_decay = 38; // // If true, print information about the state of the net that may help with // debugging learning problems. optional bool debug_info = 23 [default = false]; // // If false, don‘t save a snapshot after training finishes. optional bool snapshot_after_train = 28 [default = true]; // }solver的測試代碼例如以下:
#include "funset.hpp" #include <string> #include <vector> #include <map> #include "common.hpp" int test_caffe_solver() { caffe::Caffe::set_mode(caffe::Caffe::CPU); // set run caffe mode const std::string solver_prototxt{ "E:/GitCode/Caffe_Test/test_data/model/mnist/lenet_solver.prototxt" }; caffe::SolverParameter solver_param; if (!caffe::ReadProtoFromTextFile(solver_prototxt.c_str(), &solver_param)) { fprintf(stderr, "parse solver.prototxt fail\n"); return -1; } boost::shared_ptr<caffe::Solver<float> > solver(caffe::GetSolver<float>(solver_param)); caffe::SolverParameter param = solver->param(); if (param.has_net()) fprintf(stderr, "net: %s\n", param.net().c_str()); if (param.has_net_param()) { fprintf(stderr, "has net param\n"); caffe::NetParameter net_param = param.net_param(); if (net_param.has_name()) fprintf(stderr, "net param name: %s\n", net_param.name().c_str()); } if (param.has_train_net()) fprintf(stderr, "train_net: %s\n", param.train_net()); if (param.test_net().size() > 0) { for (auto test_net : param.test_net()) fprintf(stderr, "test_net: %s\n", test_net); } if (param.has_train_net_param()) { fprintf(stderr, "has train net param\n"); caffe::NetParameter train_net_param = param.train_net_param(); } if (param.test_net_param().size() > 0) { fprintf(stderr, "has test net param\n"); std::vector<caffe::NetParameter> test_net_param; for (auto net_param : param.test_net_param()) test_net_param.push_back(net_param); } if (param.has_train_state()) { fprintf(stderr, "has train state\n"); caffe::NetState state = param.train_state(); } if (param.test_state().size()) { fprintf(stderr, "has test state\n"); } if (param.test_iter_size() > 0) { fprintf(stderr, "has test iter\n"); for (auto iter : param.test_iter()) fprintf(stderr, " %d ", iter); fprintf(stderr, "\n"); } if (param.has_test_interval()) fprintf(stderr, "test interval: %d\n", param.test_interval()); bool test_compute_loss = param.test_compute_loss(); fprintf(stderr, "test compute loss: %d\n", test_compute_loss); bool test_initialization = param.test_initialization(); fprintf(stderr, "test initializtion: %d\n", test_initialization); if (param.has_base_lr()) { float base_lr = param.base_lr(); fprintf(stderr, "base lr: %f\n", base_lr); } if (param.has_display()) { int display = param.display(); fprintf(stderr, "display: %d\n", display); } int average_loss = param.average_loss(); fprintf(stderr, "average loss: %d\n", average_loss); if (param.has_max_iter()) { int max_iter = param.max_iter(); fprintf(stderr, "max iter: %d\n", max_iter); } int iter_size = param.iter_size(); fprintf(stderr, "iter size: %d\n", iter_size); if (param.has_lr_policy()) fprintf(stderr, "lr policy: %s\n", param.lr_policy().c_str()); if (param.has_gamma()) fprintf(stderr, "gamma: %f\n", param.gamma()); if (param.has_power()) fprintf(stderr, "power: %f\n", param.power()); if (param.has_momentum()) fprintf(stderr, "momentum: %f\n", param.momentum()); if (param.has_weight_decay()) fprintf(stderr, "weight decay: %f\n", param.weight_decay()); std::string regularization_type = param.regularization_type(); fprintf(stderr, "regularization type: %s\n", param.regularization_type().c_str()); if (param.has_stepsize()) fprintf(stderr, "stepsize: %d\n", param.stepsize()); if (param.stepvalue_size() > 0) { fprintf(stderr, "has stepvalue\n"); for (auto value : param.stepvalue()) fprintf(stderr, " %d ", value); fprintf(stderr, "\n"); } fprintf(stderr, "clip gradients: %f\n", param.clip_gradients()); fprintf(stderr, "snapshot: %d\n", param.snapshot()); if (param.has_snapshot_prefix()) fprintf(stderr, "snapshot prefix: %s\n", param.snapshot_prefix().c_str()); fprintf(stderr, "snapshot diff: %d\n", param.snapshot_diff()); caffe::SolverParameter_SnapshotFormat snapshot_format = param.snapshot_format(); fprintf(stderr, "snapshot format: %s\n", snapshot_format == 0 ?部分輸出結果例如以下:"HDF5" : "BINARYPROTO"); caffe::SolverParameter_SolverMode solver_mode = param.solver_mode(); fprintf(stderr, "solver mode: %s\n", solver_mode == 0 ? "CPU" : "GPU"); if (param.has_device_id()) fprintf(stderr, "device id: %d\n", param.device_id()); fprintf(stderr, "random seed: %d\n", param.random_seed()); caffe::SolverParameter_SolverType solver_type = param.solver_type(); std::string solver_method[] {"SGD", "NESTEROV", "ADAGRAD", "RMSPROP", "ADADELTA", "ADAM"}; fprintf(stderr, "solver type: %s\n", solver_method[solver_type].c_str()); fprintf(stderr, "delta: %f\n", param.delta()); fprintf(stderr, "momentum2: %f\n", param.momentum2()); if (param.has_rms_decay()) fprintf(stderr, "rms decy: %f\n", param.rms_decay()); fprintf(stderr, "debug info: %d\n", param.debug_info()); fprintf(stderr, "snapshot after train: %d\n", param.snapshot_after_train()); boost::shared_ptr<caffe::Net<float>> net = solver->net(); std::vector<boost::shared_ptr<caffe::Net<float>>> test_nets = solver->test_nets(); fprintf(stderr, "test nets size: %d\n", test_nets.size()); fprintf(stderr, "iter: %d\n", solver->iter()); return 0; }
GitHub:https://github.com/fengbingchun/Caffe_Test
Caffe源代碼中Solver文件分析