POJ1458 Common Subsequence —— DP 最長公共子序列(LCS)
阿新 • • 發佈:2017-10-03
common vector tin enc one 技術分享 com iss char
= zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
題目鏈接:http://poj.org/problem?id=1458
Common Subsequence
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 55099 | Accepted: 22973 |
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xijInput
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.Output
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
Source
Southeastern Europe 2003 代碼如下:1 #include <iostream> 2View Code#include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define ms(a,b) memset((a),(b),sizeof((a))) 13 using namespace std; 14 typedef long long LL; 15 const double EPS = 1e-8; 16 const int INF = 2e9; 17 const LL LNF = 2e18; 18 const int MAXN = 1e3+10; 19 20 char a[MAXN], b[MAXN]; 21 int dp[MAXN][MAXN]; 22 23 int main() 24 { 25 while(scanf("%s%s", a+1, b+1)!=EOF) 26 { 27 int n = strlen(a+1); 28 int m = strlen(b+1); 29 30 ms(dp, 0); 31 for(int i = 1; i<=n; i++) 32 for(int j = 1; j<=m; j++) 33 { 34 if(a[i]==b[j]) 35 dp[i][j] = dp[i-1][j-1]+1; 36 else 37 dp[i][j] = max(dp[i][j-1], dp[i-1][j]); 38 } 39 printf("%d\n", dp[n][m]); 40 } 41 }
POJ1458 Common Subsequence —— DP 最長公共子序列(LCS)