1. 程式人生 > >POJ1458 Common Subsequence —— DP 最長公共子序列(LCS)

POJ1458 Common Subsequence —— DP 最長公共子序列(LCS)

common vector tin enc one 技術分享 com iss char

題目鏈接:http://poj.org/problem?id=1458

Common Subsequence
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 55099 Accepted: 22973

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij
= zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2
0

Source

Southeastern Europe 2003 代碼如下: 技術分享
 1 #include <iostream>
 2
#include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define ms(a,b) memset((a),(b),sizeof((a))) 13 using namespace std; 14 typedef long long LL; 15 const double EPS = 1e-8; 16 const int INF = 2e9; 17 const LL LNF = 2e18; 18 const int MAXN = 1e3+10; 19 20 char a[MAXN], b[MAXN]; 21 int dp[MAXN][MAXN]; 22 23 int main() 24 { 25 while(scanf("%s%s", a+1, b+1)!=EOF) 26 { 27 int n = strlen(a+1); 28 int m = strlen(b+1); 29 30 ms(dp, 0); 31 for(int i = 1; i<=n; i++) 32 for(int j = 1; j<=m; j++) 33 { 34 if(a[i]==b[j]) 35 dp[i][j] = dp[i-1][j-1]+1; 36 else 37 dp[i][j] = max(dp[i][j-1], dp[i-1][j]); 38 } 39 printf("%d\n", dp[n][m]); 40 } 41 }
View Code

POJ1458 Common Subsequence —— DP 最長公共子序列(LCS)