進程、線程和協程的理解
原文地址:http://www.cnblogs.com/work115/p/5620272.html
想更加了解協程:https://www.zhihu.com/question/20511233
一、概念
1、進程
進程(Process)是計算機中的程序關於某數據集合上的一次運行活動,是系統進行資源分配和調度的基本單位,是操作系統結構的基礎。在早期面向進程設計的計算機結構中,進程是程序的基本執行實體;在當代面向線程設計的計算機結構中,進程是線程的容器。程序是指令、數據及其組織形式的描述,進程是程序的實體。
進程是一個具有獨立功能的程序關於某個數據集合的一次運行活動。它可以申請和擁有系統資源,是一個動態的概念,是一個活動的實體。它不只是程序的代碼,還包括當前的活動,通過程序計數器的值和處理寄存器的內容來表示。
進程的概念主要有兩點:第一,進程是一個實體。每一個進程都有它自己的地址空間,一般情況下,包括文本區域(text region)、數據區域(data region)和堆棧(stack region)。文本區域存儲處理器執行的代碼;數據區域存儲變量和進程執行期間使用的動態分配的內存;堆棧區域存儲著活動過程調用的指令和本地變量。第二,進程是一個“執行中的程序”。程序是一個沒有生命的實體,只有處理器賦予程序生命時(操作系統執行之),它才能成為一個活動的實體,我們稱其為進程。
2、線程
線程,有時被稱為輕量級進程(Lightweight Process,LWP),是程序執行流的最小單元。一個標準的線程由線程ID,當前指令指針(PC),寄存器集合和堆棧組 成。另外,線程是進程中的一個實體,是被系統獨立調度和分派的基本單位,線程自己不擁有系統資源,只擁有一點兒在運行中必不可少的資源,但它可與同屬一個 進程的其它線程共享進程所擁有的全部資源。一個線程可以創建和撤消另一個線程,同一進程中的多個線程之間可以並發執行。由於線程之間的相互制約,致使線程 在運行中呈現出間斷性。線程也有就緒、阻塞和運行三種基本狀態。就緒狀態是指線程具備運行的所有條件,邏輯上可以運行,在等待處理機;運行狀態是指線程占有處理機正在運行;阻塞狀態是指線程在等待一個事件(如某個信號量),邏輯上不可執行。每一個程序都至少有一個線程,若程序只有一個線程,那就是程序本身。 線程是程序中一個單一的順序控制流程。進程內一個相對獨立的、可調度的執行單元,是系統獨立調度和分派CPU的基本單位指運行中的程序的調度單位。在單個程序中同時運行多個線程完成不同的工作,稱為多線程。 線程是程序中一個單一的順序控制流程。進程內一個相對獨立的、可調度的執行單元,是系統獨立調度和分派CPU的基本單位指運行中的程序的調度單位。在單個程序中同時運行多個線程完成不同的工作,稱為多線程。 3、協程 一個程序可以包含多個協程,可以對比與一個進程包含多個線程,因而下面我們來比較協程和線程。我們知道多個線程相對獨立,有自己的上下文,切換受系統控制;而協程也相對獨立,有自己的上下文,但是其切換由自己控制,由當前協程切換到其他協程由當前協程來控制。 http://www.zhihu.com/question/20511233 4、Daemon Daemon()程序是一直運行的服務端程序,又稱為守護進程。通常在系統後臺運行,沒有控制終端,不與前臺交互,Daemon程序一般作為系統服務使 用。Daemon是長時間運行的進程,通常在系統啟動後就運行,在系統關閉時才結束。一般說Daemon程序在後臺運行,是因為它沒有控制終端,無法和前 臺的用戶交互。Daemon程序一般都作為服務程序使用,等待客戶端程序與它通信。我們也把運行的Daemon程序稱作守護進程。所謂守護 線程,是指在程序運行的時候在後臺提供一種通用服務的線程,比如垃圾回收線程就是一個很稱職的守護者,並且這種線程並不屬於程序中不可或缺的部分。因此, 當所有的非守護線程結束時,程序也就終止了,同時會殺死進程中的所有守護線程。反過來說,只要任何非守護線程還在運行,程序就不會終止。
用戶線程和守護線程兩者幾乎沒有區別,唯一的不同之處就在於虛擬機的離開:如果用戶線程已經全部退出運行了,只剩下守護線程存在了,虛擬機也就退出了。 因為沒有了被守護者,守護線程也就沒有工作可做了,也就沒有繼續運行程序的必要了。
5、多進程和多線程進程是資源分配的最小單位,線程是CPU調度的最小單位。線程和進程的區別在於,子進程和父進程有不同的代碼和數據空間,而多個線程則共享數據空 間,每個線程有自己的執行堆棧和程序計數器為其執行上下文.多線程主要是為了節約CPU時間,發揮利用,根據具體情況而定. 線程的運行中需要使用計算機的內存資源和CPU。
多進程: 進程是程序在計算機上的一次執行活動。當你運行一個程序,你就啟動了一個進程。顯然,程序是死的(靜態的),進程是活的(動態的)。進程可以分為系統進程 和用戶進程。凡是用於完成操作系統的各種功能的進程就是系統進程,它們就是處於運行狀態下的操作系統本身;所有由用戶啟動的進程都是用戶進程。進程是操作 系統進行資源分配的單位。 進程又被細化為線程,也就是一個進程下有多個能獨立運行的更小的單位。在同一個時間裏,同一個計算機系統中如果允許兩個或兩個以上的進程處於運行狀態,這 便是多任務。現代的操作系統幾乎都是多任務操作系統,能夠同時管理多個進程的運行。 多任務帶來的好處是明顯的,比如你可以邊聽mp3邊上網,與此同時甚至可以將下載的文檔打印出來,而這些任務之間絲毫不會相互幹擾。那麽這裏就涉及到並行 的問題,俗話說,一心不能二用,這對計算機也一樣,原則上一個CPU只能分配給一個進程,以便運行這個進程。我們通常使用的計算機中只有一個CPU,也就 是說只有一顆心,要讓它一心多用,同時運行多個進程,就必須使用並發技術。實現並發技術相當復雜,最容易理解的是“時間片輪轉進程調度算法”,它的思想簡 單介紹如下:在操作系統的管理下,所有正在運行的進程輪流使用CPU,每個進程允許占用CPU的時間非常短(比如10毫秒),這樣用戶根本感覺不出來 CPU是在輪流為多個進程服務,就好象所有的進程都在不間斷地運行一樣。但實際上在任何一個時間內有且僅有一個進程占有CPU。 如果一臺計算機有多個CPU,情況就不同了,如果進程數小於CPU數,則不同的進程可以分配給不同的CPU來運行,這樣,多個進程就是真正同時運行的,這 便是並行。但如果進程數大於CPU數,則仍然需要使用並發技術。 進行CPU分配是以線程為單位的,一個進程可能由多個線程組成,這時情況更加復雜,但簡單地說,有如下關系:
總線程數<= CPU數量:並行運行
總線程數> CPU數量:並發運行
並行運行的效率顯然高於並發運行,所以在多CPU的計算機中,多任務的效率比較高。但是,如果在多CPU計算機中只運行一個進程(線程),就不 能發揮多CPU的優勢。 這裏涉及到多任務操作系統的問題,多任務操作系統(如Windows)的基本原理是:操作系統將CPU的時間片分配給多個線程,每個線程在操作系統指定的 時間片內完成(註意,這裏的多個線程是分屬於不同進程的).操作系統不斷的從一個線程的執行切換到另一個線程的執行,如此往復,宏觀上看來,就好像是多個 線程在一起執行.由於這多個線程分屬於不同的進程,因此在我們看來,就好像是多個進程在同時執行,這樣就實現了多任務
多線程:在計算機編程中,一個基本的概念就是同時對多個任務加以控制。許多程序設計問題都要求程序能夠停下手頭的工作,改為處理其他一些問題, 再返回主進程。可以通過多種途徑達到這個目的。最開始的時候,那些掌握機器低級語言的程序員編寫一些“中斷服務例程”,主進程的暫停是通過硬件級的中斷實 現的。盡管這是一種有用的方法,但編出的程序很難移植,由此造成了另一類的代價高昂問題。中斷對那些實時性很強的任務來說是很有必要的。但對於其他許多問 題,只要求將問題劃分進入獨立運行的程序片斷中,使整個程序能更迅速地響應用戶的請求。
最開始,線程只是用於分配單個處理器的處理時間的一種工具。但假如操作系統本身支持多個處理器,那麽每個線程都可分配給一個不同的處理器,真正 進入“並行運算”狀態。從程序設計語言的角度看,多線程操作最有價值的特性之一就是程序員不必關心到底使用了多少個處理器。程序在邏輯意義上被分割為數個 線程;假如機器本身安裝了多個處理器,那麽程序會運行得更快,毋需作出任何特殊的調校。根據前面的論述,大家可能感覺線程處理非常簡單。但必須註意一個問 題:共享資源!如果有多個線程同時運行,而且它們試圖訪問相同的資源,就會遇到一個問題。舉個例子來說,兩個線程不能將信息同時發送給一臺打印機。為解決 這個問題,對那些可共享的資源來說(比如打印機),它們在使用期間必須進入鎖定狀態。所以一個線程可將資源鎖定,在完成了它的任務後,再解開(釋放)這個 鎖,使其他線程可以接著使用同樣的資源。
多線程是為了同步完成多項任務,不是為了提高運行效率,而是為了提高資源使用效率來提高系統的效率。線程是在同一時間需要完成多項任務的時候實現的。
一個采用了多線程技術的應用程序可以更好地利用系統資源。其主要優勢在於充分利用了CPU的空閑時間片,可以用盡可能少的時間來對用戶的要求做 出響應,使得進程的整體運行效率得到較大提高,同時增強了應用程序的靈活性。更為重要的是,由於同一進程的所有線程是共享同一內存,所以不需要特殊的數據 傳送機制,不需要建立共享存儲區或共享文件,從而使得不同任務之間的協調操作與運行、數據的交互、資源的分配等問題更加易於解決。
進程間通信(IPC,Inter-Process Communication),指至少兩個進程或線程間傳送數據或信號的一些技術或方法。進程是計算機系統分配資源的最小單位。每個進程都有自己的一部分 獨立的系統資源,彼此是隔離的。為了能使不同的進程互相訪問資源並進行協調工作,才有了進程間通信。這些進程可以運行在同一計算機上或網絡連接的不同計算 機上。
進程間通信技術包括消息傳遞、同步、共享內存和遠程過程調用。IPC是一種標準的Unix通信機制。
使用IPC 的理由:
信息共享
加速;
模塊化;
方便; 以及
私有權分離.
主要的 IPC 方法
方法 提供方(操作系統或其他環境)
文件 多數操作系統
信號 多數操作系統
Socket 多數操作系統
消息隊列(en:Message queue) 多數操作系統
管道(en:Pipe) 所有的 POSIX systems, Windows.
具名管道(en:Named Pipe) 所有的 POSIX 系統, Windows.
信號量(en:Semaphore) 所有的 POSIX 系統, Windows.
共享內存 所有的 POSIX 系統, Windows.
Message passing(en:Message passing) 用於 MPI規範,Java RMI, CORBA, MSMQ, MailSlot 以及其他.
進程、線程和協程的理解