1. 程式人生 > >Spark共享變量

Spark共享變量

vector red 十分 reat 相關操作 分布 value 反序列化 span

共享變量

通常情況下,當向Spark操作(如map,reduce)傳遞一個函數時,它會在一個遠程集群節點上執行,它會使用函數中所有變量的副本。這些變量被復制到所有的機器上,遠程機器上並沒有被更新的變量會向驅動程序回傳。在任務之間使用通用的,支持讀寫的共享變量是低效的。盡管如此,Spark提供了兩種有限類型的共享變量,廣播變量和累加器。

廣播變量

廣播變量允許程序員將一個只讀的變量緩存在每臺機器上,而不用在任務之間傳遞變量。廣播變量可被用於有效地給每個節點一個大輸入數據集的副本。Spark還嘗試使用高效地廣播算法來分發變量,進而減少通信的開銷。

Spark的動作通過一系列的步驟執行,這些步驟由分布式的洗牌操作分開。Spark自動地廣播每個步驟每個任務需要的通用數據。這些廣播數據被序列化地緩存,在運行任務之前被反序列化出來。這意味著當我們需要在多個階段的任務之間使用相同的數據,或者以反序列化形式緩存數據是十分重要的時候,顯式地創建廣播變量才有用。


通過在一個變量v上調用SparkContext.broadcast(v)可以創建廣播變量。廣播變量是圍繞著v的封裝,可以通過value方法訪問這個變量。舉例如下:

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)

scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)

在創建了廣播變量之後,在集群上的所有函數中應該使用它來替代使用v.這樣v就不會不止一次地在節點之間傳輸了。另外,為了確保所有的節點獲得相同的變量,對象v在被廣播之後就不應該再修改。

累加器

累加器是僅僅被相關操作累加的變量,因此可以在並行中被有效地支持。它可以被用來實現計數器和總和。Spark原生地只支持數字類型的累加器,編程者可以添加新類型的支持。如果創建累加器時指定了名字,可以在Spark的UI界面看到。這有利於理解每個執行階段的進程。(對於python還不支持)

累加器通過對一個初始化了的變量v調用SparkContext.accumulator(v)來創建。在集群上運行的任務可以通過add或者"+="方法在累加器上進行累加操作。但是,它們不能讀取它的值。只有驅動程序能夠讀取它的值,通過累加器的value方法。

下面的代碼展示了如何把一個數組中的所有元素累加到累加器上:

scala> val accum = sc.accumulator(0, "My Accumulator")
accum: spark.Accumulator[Int] = 0

scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)
...
10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

scala> accum.value
res2: Int = 10

盡管上面的例子使用了內置支持的累加器類型Int,但是開發人員也可以通過繼承AccumulatorParam類來創建它們自己的累加器類型。AccumulatorParam接口有兩個方法:

zero方法為你的類型提供一個0值。

addInPlace方法將兩個值相加。

假設我們有一個代表數學vector的Vector類。我們可以向下面這樣實現:

object VectorAccumulatorParam extends AccumulatorParam[Vector] {
  def zero(initialValue: Vector): Vector = {
    Vector.zeros(initialValue.size)
  }
  def addInPlace(v1: Vector, v2: Vector): Vector = {
    v1 += v2
  }
}

// Then, create an Accumulator of this type:
val vecAccum = sc.accumulator(new Vector(...))(VectorAccumulatorParam)

在Scala裏,Spark提供更通用的累加接口來累加數據,盡管結果的類型和累加的數據類型可能不一致(例如,通過收集在一起的元素來創建一個列表)。同時,SparkContext..accumulableCollection方法來累加通用的Scala的集合類型。

累加器僅僅在動作操作內部被更新,Spark保證每個任務在累加器上的更新操作只被執行一次,也就是說,重啟任務也不會更新。在轉換操作中,用戶必須意識到每個任務對累加器的更新操作可能被不只一次執行,如果重新執行了任務和作業的階段。

累加器並沒有改變Spark的惰性求值模型。如果它們被RDD上的操作更新,它們的值只有當RDD因為動作操作被計算時才被更新。因此,當執行一個惰性的轉換操作,比如map時,不能保證對累加器值的更新被實際執行了。下面的代碼片段演示了此特性:

val accum = sc.accumulator(0)
data.map { x => accum += x; f(x) }
//在這裏,accum的值仍然是0,因為沒有動作操作引起map被實際的計算

Spark共享變量