機器學習與AI相關的資料
機器學習與AI相關的資料:
1、 http://www.fast.ai/ 基礎學習
2、http://geek.ai100.com.cn/ 中文
3、http://geek.ai100.com.cn/category/notes 學習筆記
機器學習與AI相關的資料
相關推薦
機器學習與AI相關的資料
get pos 機器 post 機器學習 notes .com www .cn 機器學習與AI相關的資料: 1、 http://www.fast.ai/ 基礎學習 2、http://geek.ai100.com.cn/ 中文 3、http://geek.ai100.
基於機器學習與人工智慧的資料(資料庫+大資料)技術
該文主要介紹了資料技術的發展現狀和展望,通過對第35屆中國資料庫學術會議的內容整理以及總結而成,希望能夠給以後打算從事資料庫研發或者開發的朋友們指點迷津。本文主要內容包括:1.資料新技術簡介,2.資料質量管理(data cleaning),3.資料分析技術,4.
【Mark Schmidt課件】機器學習與資料探勘——特徵選擇
本課件的主要內容如下: 上次課程回顧:尋找“真實”模型 資訊準則 貝葉斯資訊準則 關於食物過敏 特徵選擇 全基因組關聯分析 “迴歸權重”方法 搜尋評分法 評分函式的選擇 “特徵數量”懲罰
【Mark Schmidt課件】機器學習與資料探勘——非線性迴歸
本課件主要內容包括: 魯棒迴歸 體育運動中的非線性級數 自適應計數/距離法 線性模型的侷限性 非線性特徵變換 一般多項式特徵(d = 1) 英文原文課件下載地址: http://page5.dfpan
【Mark Schmidt課件】機器學習與資料探勘——數值優化與梯度下降
本課件主要包括以下內容: 優化簡介 上次課程回顧:線性迴歸 大規模最小二乘 尋找區域性最小值的梯度下降法 二維梯度下降 存在奇異點的最小二乘 魯棒迴歸 基於L1-範數的迴歸 L1-範數的平滑近似
【Mark Schmidt課件】機器學習與資料探勘——正規方程組
本課件的主要內容包括: d維資料的梯度和臨界點 最小二乘偏導數 矩陣代數回顧 線性最小二乘 線性和二次梯度 正規方程組 最小二乘問題的不正確解 最小二乘解的非唯一性 凸函式 如何判斷函式的
【Mark Schmidt課件】機器學習與資料探勘——普通最小二乘
本課件主要內容包括: 有監督學習:迴歸 示例:依賴與解釋變數 數字標籤的處理 一維線性迴歸 最小二乘目標 微分函式最小化 最小二乘解 二維最小二乘 d維最小二乘 偏微分
【Mark Schmidt課件】機器學習與資料探勘——進一步討論線性分類器
本課件主要內容包括: 上次課程回顧:基於迴歸的分類方法 Hinge損失 Logistic損失 Logistic迴歸與SVMs “黑盒”分類器比較 最大餘量分類器 支援向量機 魯棒性與凸近似 非凸0-
【Mark Schmidt課件】機器學習與資料探勘——線性分類器
本課件主要內容包括: 上次課程回顧:L1正則化 組合特徵選擇 線性模型與最小二乘 梯度下降與誤差函式 正則化 辨識重要郵件 基於迴歸的二元分類? 一維判決邊界 二維判決邊界 感知器演算法
【Mark Schmidt課件】機器學習與資料探勘——多元分類
本課件主要內容: 上次課程回顧:隨機梯度 無限資料的隨機梯度 詞性標註POS POS特徵 多元線性分類 題外話:多標籤分類 多元SVMs 多元Logistic迴歸 題外話:Frobenius範數
【Mark Schmidt課件】機器學習與資料探勘——MLE與MAP
本課件的主要內容包括: 上次課程回顧:多元線性分類器 決策邊界形狀 識別重要電子郵件 Sigmoid函式 最大似然估計MLE 最小化負對數似然NLL 樸素貝葉斯的MLE 有監督學習的MLE Logi
【Mark Schmidt課件】機器學習與資料探勘——主元分析PCA
本課件主要內容包括: 上次課程回顧:MAP估計 人類 vs. 機器感知 隱因子模型 向量量化 向量量化 vs. PCA 主元分析PCA的應用 PCA目標函式 英文原文課件下載地址: h
【Mark Schmidt課件】機器學習與資料探勘——進一步討論PCA
本課件的主要內容包括: 機器學習工程師需要精通的10種演算法 上次課程回顧:隱因子模型 上次課程回顧:主元分析 上次課程回顧:PCA幾何描述 題外話:資料凝聚 PCA計算:交替最小化 PCA計算:預測 PCA
【Mark Schmidt課件】機器學習與資料探勘——稀疏矩陣分解
本課件主要內容包括: 上次課程回顧:基於正交/序貫基的PCA 人眼的顏色對立 顏色對立表示法 應用:人臉檢測 特徵臉 VQ vs. PCA vs. NMF 面部表示 非負最小二乘法 稀疏性與非負最小
【Mark Schmidt課件】機器學習與資料探勘——推薦系統
本課件主要內容: 上次課程回顧:隱因子模型 魯棒PCA 隱因子模型的變化形式 Netflix獎 協同過濾問題 協同過濾的矩陣分解 基於內容的濾波 vs. 協同濾波 混合方法 SVD特徵的隨機梯度
分享《機器學習與資料科學(基於R的統計學習方法)》高清中文PDF+原始碼
下載:https://pan.baidu.com/s/1Lrgtp7bnVeLoUO46qPHFJg 更多資料:http://blog.51cto.com/3215120 高清中文PDF,299頁,帶書籤目錄,文字可以複製。配套原始碼。 本書指導讀者利用R語言完成涉及機器學習的資料科學專案。作者: Da
資料預處理程式碼分享——機器學習與資料探勘
資料預處理分為6步: 第1步:匯入NumPy和Pandas庫。NumPy和Pandas是每次都要匯入的庫,其中Numpy包含了數學計算函式,Pnadas是一個用於匯入和管理資料集(Data Sets)的類庫。 第2步:匯入資料集。資料集一般都是.csv格式,csv
機器學習與Tensorflow(3)—— 機器學習及MNIST資料集分類優化
一、二次代價函式 1. 形式: 其中,C為代價函式,X表示樣本,Y表示實際值,a表示輸出值,n為樣本總數 2. 利用梯度下降法調整權值引數大小,推導過程如下圖所示: 根據結果可得,權重w和偏置b的梯度跟啟用函式的梯度成正比(即啟用函式的梯度越大,w和b的大小調整的越快,訓練速度
【Mark Schmidt課件】機器學習與資料探勘——深度學習
本課件的主要內容為: 有監督訓練路線圖 關於神經網路 線性-線性模型 非線性簡介 為什麼使用Sigmoid函式? 為什麼使用神經網路? 大腦中的深層結構 深度學習 ML與深度學習的歷史 ImageNet挑戰 人工神經網
機器學習與資料科學決策樹指南
還在為如何抉擇而感到糾結嗎?快採用決策樹(Decision Tree)演算法幫你做出決定吧。決策樹是一類非常強大的機器學習模型,具有高度可解釋的同時,在許多工中也有很高的精度。決策樹在機器學習模型領域的特殊之處在於其資訊表示的很清楚,而不像一些機器學習方法是個黑匣子,這是因為決策樹通過訓練學到的