BZOJ - 1013 高斯消元
阿新 • • 發佈:2018-01-27
線性 == scan 矩陣 log vector 第一個 for i++
n維空間中給出n+1個球面上的點求圓心坐標(x0,x1,...xn-1)
任選其中一個點坐標如第一個點(a0,b0...z0)
(x0-a0)^2+(x1-b0)^2+...=r^2
對於剩下的n個點都與上面的式子作差,把高次方的消去得到線性方程組
2(a1-a0)x0+2(b1-b0)x1+2(c1-c0)x2+...=dis1-dis0
...
共n行n列,
然後構造Ax=b丟進去高斯消元就行了
//其實我只是來試試板子(來自挑戰程序設計競賽)
//用vector來構造矩陣有點不適應
#include<bits/stdc++.h>
#define rep(i,j,k) for(int i=j;i<=k;i++)
using namespace std;
const int maxn = 1e5+11;
const double eps = 1e-8;
typedef vector<double> vec;
typedef vector<vec> mat;
vec gauss(const mat& A,const vec& b){
int n=A.size();
mat B(n,vec(n+1));//n element with vec(n+1)
rep(i,0,n-1)rep(j,0,n-1)B[i][j]=A[i][j];
rep(i,0 ,n-1) B[i][n]=b[i];//增廣
rep(i,0,n-1){//未知數系數絕對值最大的移至第i行
int now=i;
rep(j,i,n-1){
if(abs(B[j][i])>abs(B[now][i])){
now=j;
}
}
swap(B[i],B[now]);
if(abs(B[i][i])<eps)return vec();
rep(j,i+1,n) B[i][j]/=B[i][i];
rep(j,0 ,n-1) if(i!=j){
rep(k,i+1,n){
B[j][k]-=B[j][i]*B[i][k];
}
}
}
vec x(n);
rep(i,0,n-1) x[i]=B[i][n];
return x;
}
int main(){
int n;
double a0[22];
while(scanf("%d",&n)!=EOF){
mat A(n,vec(n));//n行n列
vec b(n);//n行1列
rep(i,0,n-1) scanf("%lf",&a0[i]);
double dis0=0;
rep(i,0,n-1) dis0+=a0[i]*a0[i];
rep(i,0,n-1){
double dis2=0;
rep(j,0,n-1){
scanf("%lf",&A[i][j]);
dis2+=A[i][j]*A[i][j];
A[i][j]=2*(A[i][j]-a0[j]);
}
b[i]=dis2-dis0;
}
vec x=gauss(A,b);
for(int i=0;i<x.size();i++){
if(i==x.size()-1) printf("%.3lf\n",x[i]);
else printf("%.3lf ",x[i]);
}
}
return 0;
}
BZOJ - 1013 高斯消元