1. 程式人生 > >Android源代碼解析之(七)-->LruCache緩存類

Android源代碼解析之(七)-->LruCache緩存類

access ref trie ber tro double prot 推斷 rate

轉載請標明出處:一片楓葉的專欄

android開發過程中常常會用到緩存。如今主流的app中圖片等資源的緩存策略通常是分兩級。一個是內存級別的緩存,一個是磁盤級別的緩存。

作為android系統的維護者google也開源了其緩存方案,LruCache和DiskLruCache。從android3.1開始LruCache已經作為android源代碼的一部分維護在android系統中。為了兼容曾經的版本號android的support-v4包也提供了LruCache的維護,假設App須要兼容到android3.1之前的版本號就須要使用support-v4包中的LruCache,假設不須要兼容到android3.1則直接使用android源代碼中的LruCache就可以,這裏須要註意的是DiskLruCache並非android源代碼的一部分。

在LruCache的源代碼中。關於LruCache有這種一段介紹:

A cache that holds strong references to a limited number of values. Each time a value is accessed, it is moved to the head of a queue. When a value is added to a full cache, the value at the end of that queue is evicted and may become eligible for garbage collection
.

cache對象通過一個強引用來訪問內容。每次當一個item被訪問到的時候,這個item就會被移動到一個隊列的隊首。當一個item被加入到已經滿了的隊列時,這個隊列的隊尾的item就會被移除。

事實上這個實現的過程就是LruCache的緩存策略。即Lru–>(Least recent used)最少近期使用算法。

以下我們詳細看一下LruCache的實現:

public class LruCache<K, V> {
    private final LinkedHashMap<K, V> map;

    /** Size of this cache in units. Not necessarily the number of elements. */
private int size; private int maxSize; private int putCount; private int createCount; private int evictionCount; private int hitCount; private int missCount; /** * @param maxSize for caches that do not override {@link #sizeOf}, this is * the maximum number of entries in the cache. For all other caches, * this is the maximum sum of the sizes of the entries in this cache. */ public LruCache(int maxSize) { if (maxSize <= 0) { throw new IllegalArgumentException("maxSize <= 0"); } this.maxSize = maxSize; this.map = new LinkedHashMap<K, V>(0, 0.75f, true); } /** * Sets the size of the cache. * * @param maxSize The new maximum size. */ public void resize(int maxSize) { if (maxSize <= 0) { throw new IllegalArgumentException("maxSize <= 0"); } synchronized (this) { this.maxSize = maxSize; } trimToSize(maxSize); } /** * Returns the value for {@code key} if it exists in the cache or can be * created by {@code #create}. If a value was returned, it is moved to the * head of the queue. This returns null if a value is not cached and cannot * be created. */ public final V get(K key) { if (key == null) { throw new NullPointerException("key == null"); } V mapValue; synchronized (this) { mapValue = map.get(key); if (mapValue != null) { hitCount++; return mapValue; } missCount++; } /* * Attempt to create a value. This may take a long time, and the map * may be different when create() returns. If a conflicting value was * added to the map while create() was working, we leave that value in * the map and release the created value. */ V createdValue = create(key); if (createdValue == null) { return null; } synchronized (this) { createCount++; mapValue = map.put(key, createdValue); if (mapValue != null) { // There was a conflict so undo that last put map.put(key, mapValue); } else { size += safeSizeOf(key, createdValue); } } if (mapValue != null) { entryRemoved(false, key, createdValue, mapValue); return mapValue; } else { trimToSize(maxSize); return createdValue; } } /** * Caches {@code value} for {@code key}. The value is moved to the head of * the queue. * * @return the previous value mapped by {@code key}. */ public final V put(K key, V value) { if (key == null || value == null) { throw new NullPointerException("key == null || value == null"); } V previous; synchronized (this) { putCount++; size += safeSizeOf(key, value); previous = map.put(key, value); if (previous != null) { size -= safeSizeOf(key, previous); } } if (previous != null) { entryRemoved(false, key, previous, value); } trimToSize(maxSize); return previous; } /** * Remove the eldest entries until the total of remaining entries is at or * below the requested size. * * @param maxSize the maximum size of the cache before returning. May be -1 * to evict even 0-sized elements. */ public void trimToSize(int maxSize) { while (true) { K key; V value; synchronized (this) { if (size < 0 || (map.isEmpty() && size != 0)) { throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!"); } if (size <= maxSize) { break; } Map.Entry<K, V> toEvict = map.eldest(); if (toEvict == null) { break; } key = toEvict.getKey(); value = toEvict.getValue(); map.remove(key); size -= safeSizeOf(key, value); evictionCount++; } entryRemoved(true, key, value, null); } } /** * Removes the entry for {@code key} if it exists. * * @return the previous value mapped by {@code key}. */ public final V remove(K key) { if (key == null) { throw new NullPointerException("key == null"); } V previous; synchronized (this) { previous = map.remove(key); if (previous != null) { size -= safeSizeOf(key, previous); } } if (previous != null) { entryRemoved(false, key, previous, null); } return previous; } /** * Called for entries that have been evicted or removed. This method is * invoked when a value is evicted to make space, removed by a call to * {@link #remove}, or replaced by a call to {@link #put}. The default * implementation does nothing. * * <p>The method is called without synchronization: other threads may * access the cache while this method is executing. * * @param evicted true if the entry is being removed to make space, false * if the removal was caused by a {@link #put} or {@link #remove}. * @param newValue the new value for {@code key}, if it exists. If non-null, * this removal was caused by a {@link #put}. Otherwise it was caused by * an eviction or a {@link #remove}. */ protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {} /** * Called after a cache miss to compute a value for the corresponding key. * Returns the computed value or null if no value can be computed. The * default implementation returns null. * * <p>The method is called without synchronization: other threads may * access the cache while this method is executing. * * <p>If a value for {@code key} exists in the cache when this method * returns, the created value will be released with {@link #entryRemoved} * and discarded. This can occur when multiple threads request the same key * at the same time (causing multiple values to be created), or when one * thread calls {@link #put} while another is creating a value for the same * key. */ protected V create(K key) { return null; } private int safeSizeOf(K key, V value) { int result = sizeOf(key, value); if (result < 0) { throw new IllegalStateException("Negative size: " + key + "=" + value); } return result; } /** * Returns the size of the entry for {@code key} and {@code value} in * user-defined units. The default implementation returns 1 so that size * is the number of entries and max size is the maximum number of entries. * * <p>An entry‘s size must not change while it is in the cache. */ protected int sizeOf(K key, V value) { return 1; } /** * Clear the cache, calling {@link #entryRemoved} on each removed entry. */ public final void evictAll() { trimToSize(-1); // -1 will evict 0-sized elements } /** * For caches that do not override {@link #sizeOf}, this returns the number * of entries in the cache. For all other caches, this returns the sum of * the sizes of the entries in this cache. */ public synchronized final int size() { return size; } /** * For caches that do not override {@link #sizeOf}, this returns the maximum * number of entries in the cache. For all other caches, this returns the * maximum sum of the sizes of the entries in this cache. */ public synchronized final int maxSize() { return maxSize; } /** * Returns the number of times {@link #get} returned a value that was * already present in the cache. */ public synchronized final int hitCount() { return hitCount; } /** * Returns the number of times {@link #get} returned null or required a new * value to be created. */ public synchronized final int missCount() { return missCount; } /** * Returns the number of times {@link #create(Object)} returned a value. */ public synchronized final int createCount() { return createCount; } /** * Returns the number of times {@link #put} was called. */ public synchronized final int putCount() { return putCount; } /** * Returns the number of values that have been evicted. */ public synchronized final int evictionCount() { return evictionCount; } /** * Returns a copy of the current contents of the cache, ordered from least * recently accessed to most recently accessed. */ public synchronized final Map<K, V> snapshot() { return new LinkedHashMap<K, V>(map); } @Override public synchronized final String toString() { int accesses = hitCount + missCount; int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0; return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]", maxSize, hitCount, missCount, hitPercent); } }

能夠看到LruCache初始化的時候須要使用泛型,一般的我們這樣初始化LruCache對象:

// 獲取應用程序最大可用內存  
        int maxMemory = (int) Runtime.getRuntime().maxMemory();  
        int cacheSize = maxMemory / 8;  
        // 設置圖片緩存大小為程序最大可用內存的1/8  
        mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {  
            @Override  
            protected int sizeOf(String key, Bitmap bitmap) {  
                return bitmap.getByteCount();  
            }  
        };  

這裏我們假設通過String作為key保存bitmap對象,同一時候須要傳遞一個int型的maxSize數值。主要用於設置LruCache鏈表的最大值。

查看其構造方法:

// 獲取應用程序最大可用內存  
        int maxMemory = (int) Runtime.getRuntime().maxMemory();  
        int cacheSize = maxMemory / 8;  
        // 設置圖片緩存大小為程序最大可用內存的1/8  
        mMemoryCache = new LruCache<String, Bitmap>(cacheSize) {  
            @Override  
            protected int sizeOf(String key, Bitmap bitmap) {  
                return bitmap.getByteCount();  
            }  
        };  

能夠看到其基本的是初始化了maxSize和map鏈表對象。

然後查看put方法:

public final V put(K key, V value) {
        if (key == null || value == null) {
            throw new NullPointerException("key == null || value == null");
        }

        V previous;
        synchronized (this) {
            putCount++;
            size += safeSizeOf(key, value);
            previous = map.put(key, value);
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }
        }

        if (previous != null) {
            entryRemoved(false, key, previous, value);
        }

        trimToSize(maxSize);
        return previous;
    }

須要傳遞兩個參數:K和V,首先做了一下參數的推斷,然後定義一個保存前一個Value值得暫時變量。讓putCount(put運行的次數)自增,讓map的size大小自增。


須要註意的是這裏的

previous = map.put(key, value);

我們看一下這裏的map.put()的詳細實現:

@Override public V put(K key, V value) {
        if (key == null) {
            return putValueForNullKey(value);
        }

        int hash = Collections.secondaryHash(key);
        HashMapEntry<K, V>[] tab = table;
        int index = hash & (tab.length - 1);
        for (HashMapEntry<K, V> e = tab[index]; e != null; e = e.next) {
            if (e.hash == hash && key.equals(e.key)) {
                preModify(e);
                V oldValue = e.value;
                e.value = value;
                return oldValue;
            }
        }

        // No entry for (non-null) key is present; create one
        modCount++;
        if (size++ > threshold) {
            tab = doubleCapacity();
            index = hash & (tab.length - 1);
        }
        addNewEntry(key, value, hash, index);
        return null;
    }

將Key與Value的值壓入Map中,這裏推斷了一下假設map中已經存在該key,value鍵值對,則不再壓入map,並將Value值返回,否則將該鍵值對壓入Map中。並返回null;

返回繼續put方法:

previous = map.put(key, value);
            if (previous != null) {
                size -= safeSizeOf(key, previous);
            }

能夠看到這裏我們推斷map.put方法的返回值是否為空。假設不為空的話,則說明我們剛剛並沒有將我麽你的鍵值對壓入Map中,所以這裏的size須要自減;

然後以下:

if (previous != null) {
            entryRemoved(false, key, previous, value);
        }

這裏推斷previous是否為空,假設不為空的話,調用了一個空的實現方法entryRemoved(),也就是說我們能夠實現自己的LruCache並在加入緩存的時候若存在該緩存能夠重寫這種方法;

以下調用了trimToSize(maxSize)方法:

public void trimToSize(int maxSize) {
        while (true) {
            K key;
            V value;
            synchronized (this) {
                if (size < 0 || (map.isEmpty() && size != 0)) {
                    throw new IllegalStateException(getClass().getName()
                            + ".sizeOf() is reporting inconsistent results!");
                }

                if (size <= maxSize) {
                    break;
                }

                Map.Entry<K, V> toEvict = map.eldest();
                if (toEvict == null) {
                    break;
                }

                key = toEvict.getKey();
                value = toEvict.getValue();
                map.remove(key);
                size -= safeSizeOf(key, value);
                evictionCount++;
            }

            entryRemoved(true, key, value, null);
        }
    }

該方法主要是推斷該Map的大小是否已經達到闕值,若達到,則將Map隊尾的元素(最不常使用的元素)remove掉。

總結:
LruCache put方法,將鍵值對壓入Map數據結構中。若這是Map的大小已經大於LruCache中定義的最大值,則將Map中最早壓入的元素remove掉;

查看get方法:

public final V get(K key) {
        if (key == null) {
            throw new NullPointerException("key == null");
        }

        V mapValue;
        synchronized (this) {
            mapValue = map.get(key);
            if (mapValue != null) {
                hitCount++;
                return mapValue;
            }
            missCount++;
        }

        /*
         * Attempt to create a value. This may take a long time, and the map
         * may be different when create() returns. If a conflicting value was
         * added to the map while create() was working, we leave that value in
         * the map and release the created value.
         */

        V createdValue = create(key);
        if (createdValue == null) {
            return null;
        }

        synchronized (this) {
            createCount++;
            mapValue = map.put(key, createdValue);

            if (mapValue != null) {
                // There was a conflict so undo that last put
                map.put(key, mapValue);
            } else {
                size += safeSizeOf(key, createdValue);
            }
        }

        if (mapValue != null) {
            entryRemoved(false, key, createdValue, mapValue);
            return mapValue;
        } else {
            trimToSize(maxSize);
            return createdValue;
        }
    }

能夠看到參數值為Key。簡單的理解就是通過key值從map中取出Value值。
詳細來說,推斷map中是否含有key值value值。若存在。則hitCount(擊中元素數量)自增,並返回Value值。若沒有擊中,則運行create(key)方法,這裏看到create方法是一個空的實現方法,返回值為null。所以我們能夠重寫該方法,在調用get(key)的時候若沒有找到value值,則自己主動創建一個value值並壓入map中。

總結:

  • LruCache,內部使用Map保存內存級別的緩存

  • LruCache使用泛型能夠設配各種類型

  • LruCache使用了Lru算法保存數據(最短最少使用least recent use)

  • LruCache僅僅用使用put和get方法壓入數據和取出數據

另外對android源代碼解析方法感興趣的可參考我的:
android源代碼解析之(一)–>android項目構建過程
android源代碼解析之(二)–>異步消息機制
android源代碼解析之(三)–>異步任務AsyncTask
android源代碼解析之(四)–>HandlerThread
android源代碼解析之(五)–>IntentService
android源代碼解析之(六)–>Log


本文以同步至github中:https://github.com/yipianfengye/androidSource。歡迎star和follow


Android源代碼解析之(七)--&gt;LruCache緩存類