Spark:如何替換sc.parallelize(List(item1,item2)).collect().foreach(row=>{})為並行?
阿新 • • 發佈:2018-03-04
tty ima tle items class tab 個數 min 集合
代碼場景:
1)設定的幾種數據場景,遍歷所有場景:依次統計滿足每種場景條件下的數據,並把統計結果存入hive;
2)已有代碼如下:
case class IndoorOTTCalibrateBuildingVecotrLegend(oid: Int, minHeight: Int, maxHeight: Int, minGridIDCount: Int, maxGridIDCount: Int, heightType: Int) extends Serializable // 實例化建築物區間段:按照柵格的個數(面積)、樓的高度(商場等場景)來劃分場景 val buildingHeightLegends = List( IndoorOTTCalibrateBuildingVecotrLegend(1, 1, 30, 1, 21, BuildingCalibrateHeightType.HeightType1.toString.toInt), IndoorOTTCalibrateBuildingVecotrLegend(2, 1, 30, 21, 45, BuildingCalibrateHeightType.HeightType2.toString.toInt), IndoorOTTCalibrateBuildingVecotrLegend(3, 1, 30, 45, 100, BuildingCalibrateHeightType.HeightType3.toString.toInt), IndoorOTTCalibrateBuildingVecotrLegend(4, 30, 50, 1, 21, BuildingCalibrateHeightType.HeightType4.toString.toInt), IndoorOTTCalibrateBuildingVecotrLegend(5, 30, 50, 21, 45, BuildingCalibrateHeightType.HeightType5.toString.toInt), IndoorOTTCalibrateBuildingVecotrLegend(6, 30, 50, 45, 100, BuildingCalibrateHeightType.HeightType6.toString.toInt), IndoorOTTCalibrateBuildingVecotrLegend(7, 50, 5000, 1, 100, BuildingCalibrateHeightType.HeightType7.toString.toInt) ) spark.sparkContext.parallelize(buildingHeightLegends).collect().foreach(buildingHeightLegend => { generateSampleBySenceType(spark, p_city, p_hour_start, p_hour_end, p_fpb_day, p_day_sample, linkLossCalibrateParameter, buildingHeightLegend) })
備註:
在generateSampleBySenceType()函數內部包含有:
spark.sql(s"""
|xxx |where t10.heihgt>=${buildingHieghtLegend.MinHeight} and t10.height<${buildingHieghtLegend.MaxHeight} |and t10.gridcount<=${buildingHieghtLegend.MinGridIDCount} and t10.gridcount>${buildingHieghtLegend.MaxGridIDCount}
|""".stripMargin)
如果把代碼修改:
val buildingHeightLegends_df = spark.sqlContext.createDataFrame(buildingHeightLegends) buildingHeightLegends_df.createOrReplaceTempView("temp_buildingheightlegends") sql(s"""|select * from temp_buildingheightlegends""".stripMargin).repartition(buildingHeightLegends.length).foreachPartition(rows => { for (row <- rows) { val buildingHeightLegend = new IndoorOTTCalibrateBuildingVecotrLegend( row.getAs[Int]("oid"), row.getAs[Int]("minheight"), row.getAs[Int]("maxheight"), row.getAs[Int]("mingrididcount"), row.getAs[Int]("maxgrididcount"), row.getAs[Int]("heighttype")) generateSampleBySenceType(spark, p_city, p_hour_start, p_hour_end, p_fpb_day, p_day_sample, linkLossCalibrateParameter, buildingHeightLegend) } })
則會提示:generateSampleBySenceType()內部sql代碼位置拋出SparkSession為NULL的異常。
修改方案:
把buildingHeightLegends註冊為臨時表temp_buildingHeightLegends,去掉外層的foreach,之後在generateSampleBySenceType()內部把temp_buildingHeightLegends與其他結果集合進行cross join:
測試代碼如下:
-- 場景表 CREATE TABLE [dbo].[test_senceitems]( [sencetype] [int] NULL, [minheight] [int] NULL, [maxheight] [int] NULL, [mingridcount] [int] NULL, [maxgridcount] [int] NULL ) INSERT [dbo].[test_senceitems] ([sencetype], [minheight], [maxheight], [mingridcount], [maxgridcount]) VALUES (1, 1, 30, 1, 21) INSERT [dbo].[test_senceitems] ([sencetype], [minheight], [maxheight], [mingridcount], [maxgridcount]) VALUES (2, 1, 30, 21, 45) INSERT [dbo].[test_senceitems] ([sencetype], [minheight], [maxheight], [mingridcount], [maxgridcount]) VALUES (3, 1, 30, 45, 100) INSERT [dbo].[test_senceitems] ([sencetype], [minheight], [maxheight], [mingridcount], [maxgridcount]) VALUES (4, 30, 50, 1, 21) INSERT [dbo].[test_senceitems] ([sencetype], [minheight], [maxheight], [mingridcount], [maxgridcount]) VALUES (5, 30, 50, 21, 45) INSERT [dbo].[test_senceitems] ([sencetype], [minheight], [maxheight], [mingridcount], [maxgridcount]) VALUES (6, 30, 50, 45, 100) INSERT [dbo].[test_senceitems] ([sencetype], [minheight], [maxheight], [mingridcount], [maxgridcount]) VALUES (7, 50, 5000, 1, 100) -- 業務過濾統計表 CREATE TABLE [dbo].[test_grid]( [gridid] [nvarchar](50) NULL, [height] [int] NULL, [gridcount] [int] NULL ) INSERT [dbo].[test_grid] ([gridid], [height], [gridcount]) VALUES (N‘g1‘, 8, 23) INSERT [dbo].[test_grid] ([gridid], [height], [gridcount]) VALUES (N‘g2‘, 3, 87) INSERT [dbo].[test_grid] ([gridid], [height], [gridcount]) VALUES (N‘g3‘, 4, 34) INSERT [dbo].[test_grid] ([gridid], [height], [gridcount]) VALUES (N‘g4‘, 30, 54) INSERT [dbo].[test_grid] ([gridid], [height], [gridcount]) VALUES (N‘g5‘, 32, 32) INSERT [dbo].[test_grid] ([gridid], [height], [gridcount]) VALUES (N‘g6‘, 32, 20) INSERT [dbo].[test_grid] ([gridid], [height], [gridcount]) VALUES (N‘g7‘, 120, 34) INSERT [dbo].[test_grid] ([gridid], [height], [gridcount]) VALUES (N‘g8‘, 89, 54) INSERT [dbo].[test_grid] ([gridid], [height], [gridcount]) VALUES (N‘g9‘, 9, 16)
替換generateSampleBySenceType()內部sql(s"""|""".stripMargin)代碼類似如下:
select t10.*,t11.* from test_grid t10 cross join test_senceitems t11 where t10.height>=t11.minheight and t10.height<t11.maxheight and t10.gridcount>=t11.mingridcount and t10.gridcount<t11.maxgridcount
Spark:如何替換sc.parallelize(List(item1,item2)).collect().foreach(row=>{})為並行?