caffe makefile.config anaconda2 python3 所有問題一種解決方式
我只改了兩個數字,然後,所有錯誤,不翼而飛,兩天折騰,全是窮折騰。
事情是這樣的,除了官方說法,其他不帶官方doc的教程都是耍流氓。
有人說,官方說anaconda+python非常簡單好配置,為什麽,我這麽多錯誤,最後不得不用pip,因為官方配置文檔,就是makefile.config裏面是anaconda2+python2.7,如果你安裝的是以上版本,那你的確很簡單,但是舊版本是註定要被淘汰的,你看現在誰用windows xp?
沒有教程,或者沒有最新的針對anaconda3+python3.6的,中麽辦?
我告訴你,配置的時候只需按照你的anaconda安裝包裏面的路徑,原本的改了那個針對anaconda2的路徑即可,所有前置,所有版本,全都給你弄好了,你只要改了比如我的python在anaconda中的
那我需要把config中的python2.7改成3.6m總之,你既然用了anaconda,你就要精確的告訴你的caffe去哪裏找我的庫,而不是瞎改,改完了出錯,到處去搜索(是我)我看了那麽多doc,唯一一塊自由發揮,就把自己給坑了(的確看臉,可能最近照鏡子有點多)
最後附上我的config,我這片終極教程,是建立在你看了官網教程的基礎上的,配置最後的config時的。另外提醒一句,GPU cudnn要求你的顯卡加速在3以上,我的機子不到,而且bantu16.04要求裝cuda8.0,我裝了9.1。我顯然是好奇又傻大膽,在犯錯的邊緣試探,就愛嘗試最新版,等我裝回cuda8,再整個GPU版本的。
請註意cudnn與cuda是不一定一起的,具體看管網,配置的時候說了三種情況。
另外如果裝cudnn那麽請註意時差,對面工作時間非常準時,我們只能在早上還有晚上訪問觀望。其他時間都是維護。我就奇怪了,運維都請不起嗎???
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).# USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you‘re using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 -gencode arch=compute_20,code=sm_21 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := atlas # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python3.5 \ /usr/lib/python3.6/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it‘s in root. ANACONDA_HOME := $(HOME)/anaconda3 PYTHON_INCLUDE := $(ANACONDA_HOME)/include $(ANACONDA_HOME)/include/python3.6m $(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) #PYTHON_LIBRARIES := boost_python3 python3.5m #PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. #PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)‘))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include #INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that ‘make runtest‘ will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
最後,如果有問題歡迎留言,我現在還比較熟悉,你在晚點我就忘了。
另外,萬一火了,問得太多了,我就該高冷了(想太多)
caffe makefile.config anaconda2 python3 所有問題一種解決方式