1. 程式人生 > >使用神經網絡算法檢測JAVA代碼溢出攻擊

使用神經網絡算法檢測JAVA代碼溢出攻擊

使用神經網絡算法檢測JAVA代碼溢出攻擊

# -*- coding:utf-8 -*- import re import matplotlib.pyplot as plt import os from sklearn.feature_extraction.text import CountVectorizer from sklearn import cross_validation import os import numpy as np from sklearn.neural_network import MLPClassifier def load_one_flle(filename): x=[] with open(filename) as f: line=f.readline() line=line.strip(‘\n‘) return line def load_adfa_training_files(rootdir): x=[] y=[] list = os.listdir(rootdir) for i in range(0, len(list)): path = os.path.join(rootdir, list[i]) if os.path.isfile(path): x.append(load_one_flle(path)) print("Load file(%s)" % path) y.append(0) return x,y def dirlist(path, allfile): filelist = os.listdir(path) for filename in filelist: filepath = os.path.join(path, filename) if os.path.isdir(filepath): dirlist(filepath, allfile) else: allfile.append(filepath) return allfile def load_adfa_java_files(rootdir): x=[] y=[] allfile=dirlist(rootdir,[]) for file in allfile: if re.match(r"ADFA-LD/Attack_Data_Master/Java_Meterpreter_\d+/UAD-Java-Meterpreter*",file): print("Load file(%s)" % file) x.append(load_one_flle(file)) y.append(1) return x,y if __name__ == ‘__main__‘: x1,y1=load_adfa_training_files("ADFA-LD/Training_Data_Master/") x2,y2=load_adfa_java_files("ADFA-LD/Attack_Data_Master/") x=x1+x2 y=y1+y2 #print x vectorizer = CountVectorizer(min_df=1) x=vectorizer.fit_transform(x) x=x.toarray() mlp = MLPClassifier(hidden_layer_sizes=(150,50), max_iter=10, alpha=1e-4, solver=‘sgd‘, verbose=10, tol=1e-4, random_state=1, learning_rate_init=.1) score=cross_validation.cross_val_score(mlp, x, y, n_jobs=-1, cv=10) print(np.mean(score))

使用神經網絡算法檢測JAVA代碼溢出攻擊