1. 程式人生 > >Python scipy.sparse矩陣使用方法

Python scipy.sparse矩陣使用方法

允許 href pri rom iter products https res tool

本文以csr_matrix為例來說明sparse矩陣的使用方法,其他類型的sparse矩陣可以參考https://docs.scipy.org/doc/scipy/reference/sparse.html

csr_matrix是Compressed Sparse Row matrix的縮寫組合,下面介紹其兩種初始化方法

csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])

  where data, row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k]

.

csr_matrix((data, indices, indptr), [shape=(M, N)])

  is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

上述官方文檔給出了:稀疏矩陣的參數及其含義、稀疏矩陣的構造方式。闡述形式簡單明了,讀起來令人賞心悅目。

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power

Advantages of the CSR format

  • efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
  • efficient row slicing
  • fast matrix vector products

Disadvantages of the CSR format

  • slow column slicing operations (consider CSC)
  • changes to the sparsity structure are expensive (consider LIL or DOK)

上述官方文檔時稀疏矩陣的一些特性以及csr_matrix的優缺點,並且在指明各種缺點的同時,提供了可以考慮的技術實現。

代碼示例1

技術分享圖片
import numpy as np
from scipy.sparse import csr_matrix

row = np.array([0, 0, 1, 2, 2, 2])
col = np.array([0, 2, 2, 0, 1, 2])
data = np.array([1, 2, 3, 4, 5, 6])
a = csr_matrix((data, (row, col)), shape=(3, 3)).toarray()

print(a)
技術分享圖片

運行結果:

array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

代碼示例2

indptr = np.array([0, 2, 3, 6])
indices = np.array([0, 2, 2, 0, 1, 2])
data = np.array([1, 2, 3, 4, 5, 6])
a = csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()

print(a)

允許結果:

array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

Python scipy.sparse矩陣使用方法