詳解k8s一個完整的監控方案(Heapster+Grafana+InfluxDB) - kubernetes
1、淺析整個監控流程
heapster以k8s內置的cAdvisor作為數據源收集集群信息,並匯總出有價值的性能數據(Metrics):cpu、內存、網絡流量等,然後將這些數據輸出到外部存儲,如InfluxDB,最後就可以通過相應的UI界面顯示出來,如grafana。 另外heapster的數據源和外部存儲都是可插拔的,所以可以很靈活的組建出很多監控方案,如:Heapster+ElasticSearch+Kibana等等。
2、創建k8s資源對象
使用官方提供的yml文件有一些小問題,請參考以下改動和說明:
2.1、創建InfluxDB資源對象
apiVersion: apps/v1
kind: Deployment
metadata:
name: monitoring-influxdb
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
task: monitoring
k8s-app: influxdb
template:
metadata:
labels:
task: monitoring
k8s-app: influxdb
spec:
containers:
- name: influxdb
image: k8s.gcr.io/heapster-influxdb-amd64:v1.3.3
volumeMounts:
- mountPath: /data
name: influxdb-storage
volumes:
- name: influxdb-storage
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
labels:
task: monitoring
kubernetes.io/cluster -service: ‘true‘
kubernetes.io/name: monitoring-influxdb
name: monitoring-influxdb
namespace: kube-system
spec:
type: NodePort
ports:
- nodePort: 31001
port: 8086
targetPort: 8086
selector:
k8s-app: influxdb
註意:這裏我們使用NotePort暴露monitoring-influxdb服務在主機的31001端口上,那麽InfluxDB服務端的地址:http://[host-ip]:31001 ,記下這個地址,以便創建heapster和為grafana配置數據源時,可以直接使用。
2.1、創建Grafana資源對象
apiVersion: apps/v1
kind: Deployment
metadata:
name: monitoring-grafana
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
task: monitoring
k8s-app: grafana
template:
metadata:
labels:
task: monitoring
k8s-app: grafana
spec:
containers:
- name: grafana
image: k8s.gcr.io/heapster-grafana-amd64:v4.4.3
ports:
- containerPort: 3000
protocol: TCP
volumeMounts:
- mountPath: /etc/ssl/certs
name: ca-certificates
readOnly: true
- mountPath: /var
name: grafana-storage
env:
- name: INFLUXDB_HOST
value: monitoring-influxdb
- name: GF_SERVER_HTTP_PORT
value: "3000"
# The following env variables are required to make Grafana accessible via
# the kubernetes api-server proxy. On production clusters, we recommend
# removing these env variables, setup auth for grafana, and expose the grafana
# service using a LoadBalancer or a public IP.
- name: GF_AUTH_BASIC_ENABLED
value: "false"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ORG_ROLE
value: Admin
- name: GF_SERVER_ROOT_URL
# If you‘re only using the API Server proxy, set this value instead:
# value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
value: /
volumes:
- name: ca-certificates
hostPath:
path: /etc/ssl/certs
- name: grafana-storage
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
labels:
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
kubernetes.io/cluster-service: ‘true‘
kubernetes.io/name: monitoring-grafana
name: monitoring-grafana
namespace: kube-system
spec:
# In a production setup, we recommend accessing Grafana through an external Loadbalancer
# or through a public IP.
# type: LoadBalancer
# You could also use NodePort to expose the service at a randomly-generated port
type: NodePort
ports:
- nodePort: 30108
port: 80
targetPort: 3000
selector:
k8s-app: grafana
註意:這裏我們使用NotePort暴露monitoring-grafana服務在主機的30108上,那麽Grafana服務端的地址:http://registry.wuling.com:30108 ,通過瀏覽器訪問,為Grafana修改數據源,如下:
標紅的地方,為上一步記錄下的InfluxDB服務端的地址。
2.2、創建Heapster資源對象
apiVersion: v1
kind: ServiceAccount
metadata:
name: heapster
namespace: kube-system
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: heapster
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
task: monitoring
k8s-app: heapster
template:
metadata:
labels:
task: monitoring
k8s-app: heapster
spec:
serviceAccountName: heapster
containers:
- name: heapster
image: k8s.gcr.io/heapster-amd64:v1.4.2
imagePullPolicy: IfNotPresent
command:
- /heapster
- --source=kubernetes:https://kubernetes.default
- --sink=influxdb:http://150.109.39.33:31001 # 這裏填寫剛剛記錄下的InfluxDB服務端的地址。
---
apiVersion: v1
kind: Service
metadata:
labels:
task: monitoring
# For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
# If you are NOT using this as an addon, you should comment out this line.
kubernetes.io/cluster-service: ‘true‘
kubernetes.io/name: Heapster
name: heapster
namespace: kube-system
spec:
ports:
- port: 80
targetPort: 8082
selector:
k8s-app: heapster
--source 為heapster指定獲取集群信息的數據源。參考:https://github.com/kubernetes/heapster/blob/master/docs/source-configuration.md
--sink 為heaster指定後端存儲,這裏我們使用InfluxDB,其他的,請參考:https://github.com/kubernetes/heapster/blob/master/docs/sink-owners.md
這裏heapster留下了一個的坑,請繼續往下看,當我部署完heapster,通過查看Heapster容器組的鏡像發現:
很多人都以為是https或者k8s配置的問題,於是去就慌忙的去配置InSecure http方式,導致坑越來越深,透明度越來越低,更是無從下手,我也是這樣弄了很久,都較上勁了,此處省略一萬字。。。,當這些路子都走遍了,再次品讀下面的原文:
才發現是權限的問題,heaster默認使用一個令牌(Token)與ApiServer進行認證,通過查看heapster.yml發現 serviceAccountName: heapster ,現在明白了吧,就是heaster沒有權限,那麽如何授權呢-----給heaster綁定一個有權限的角色就行了,如下:
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: heapster
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: heapster
namespace: kube-system
當創建heapster資源的時候,直接把這段代碼加上,就行了。
3、查看監控詳情
3.1、通過dashboard查看集群概況
整個監控方案部署成功後,從上圖可以看到,在不同粒度/維度下,dashboard上可以呈現對象的具體CPU和內存使用率。
3.2、通過Grafana查看集群詳情(cpu、memory、filesystem)
詳解k8s一個完整的監控方案(Heapster+Grafana+InfluxDB) - kubernetes