SPOJ:Bits. Exponents and Gcd(組合數+GCD)
Rastas‘s has been given a number n. Being weak at mathematics, she has to consider all the numbers from 1 to 2n - 1 so as to become perfect in calculations. (You can assume each number is consider as a soldier).
We define the strength of number i as the number of set bits (bits equal to 1) in binary representation of number i
If the greatest common divisor of numbers a and b is gcd(a, b),
Rastas would like to calculate the function S which is equal to:
As the friend of Rastas, it‘s your duty to calculate S modulo 109 + 7.
Input
The first line of the input contains the number of test cases, T. Each of the next T lines contains an integer n, as mentioned in the question
Output
For each value of n given, find the value of the function S.
Constraints
Sum of n over all test cases doesn‘t exceed 2500.
Example
Input: 3
1
2
5
Output:
0
3
680
題意:給定N,求,
即對這些(i,j),將i和j表示成二進制,累加i和j的二進制裏1的個數的gcd。
思路:考慮靠2^N-1很大,直接針對二進制考慮,因為最多有2500個1,O(N^2)可以暴力搞定。我們考慮組合數,枚舉有X個1的個數個Y個1的(i,j),貢獻是nun[X]*num[Y]*gcd(X,Y)。當X等於Y時,減去自己。其中num[X]=C(X,N);
#include<bits/stdc++.h> #define ll long long using namespace std; const int Mod=1e9+7; int c[2510],fac[2510]; int qpow(int a,int x){ a%=Mod; int res=1; while(x){ if(x&1) res=(ll)res*a%Mod; a=(ll)a*a%Mod; x>>=1; } return res; } int main() { int N,M,i,j,T,ans; fac[0]=1; for(i=1;i<=2500;i++) fac[i]=(ll)fac[i-1]*i%Mod; scanf("%d",&T); while(T--){ ans=0; scanf("%d",&N); for(i=1;i<=N;i++){ c[i]=(ll)fac[N]*qpow(fac[i],Mod-2)%Mod*qpow(fac[N-i],Mod-2)%Mod; } for(i=1;i<=N;i++) { for(j=1;j<=N;j++){ if(i!=j) ans=(ans+(ll)c[i]*c[j]%Mod*__gcd(i,j))%Mod; else ans=(ans+(ll)c[i]*(c[i]-1)%Mod*i)%Mod; } } ans=(ll)ans*qpow(2,Mod-2)%Mod; printf("%d\n",ans); } return 0; }
SPOJ:Bits. Exponents and Gcd(組合數+GCD)