1. 程式人生 > >2.1.6

2.1.6

minus msu cap 子集 pan 一個 mat ots spa

26.設\(E\)是可測集\(,m(E)>0.\)證明存在\(x\in E,\)使得對於任意\(\delta>0,\)\(m(E\cap B(x,\delta))>0.\)
27.若\(\{E_k\}\)\(\mathbb R^n\)中可測集合列,證明:
(1)\(\displaystyle m(\varliminf_{k\to\infty}E_k)\leq\varliminf_{k\to\infty}m(E_k);\)
(2)若存在\(k_0,\)使得\(\displaystyle m(\bigcup_{k=k_0}^\infty E_k)<\infty,\)\[m(\varlimsup_{k\to\infty}E_k)\geq\varlimsup_{k\to\infty}m(E_k).\]


28.設\(E\subset\mathbb R^n,H\supset E,H\)是可測集.若\(H\setminus E\)中任意可測子集皆為零測集,試問\(m(H)=m^*(E)\)嗎?
29.設\(E\subset\mathbb R^n,\)證明存在\(G_\delta\)型集\(H\)\(H\supset E,\)使得對於任意一個可測集\(A\subset\mathbb R^n,\)\(m^*(E\cap A)=m(H\cap A).\)
30.設\(\{E_k\}\)\([0,1]\)中可測集列\(,m(E_k)=1,k=1,2,\cdots,\)證明\[m(\bigcap_{k=1}^\infty E_k)=1.\]

26.\(\displaystyle \mathbb Q=\{r_n\},m(E)=\bigcup_{n=1}^\infty m(E\cap B(r_n,\delta)).\)
27.(1)\(\displaystyle m(\varliminf_{k\to\infty}E_k)=\lim_{k\to\infty}m(\bigcap_{j=k}^\infty E_j)\leq\lim_{k\to\infty}\inf_{j\geq k}m(E_j)=\varliminf_{k\to\infty}m(E_k).\)
(2)\(\displaystyle m(\varlimsup_{k\to\infty}E_k)=\lim_{k\to\infty}m(\bigcup_{j=k}^\infty E_j)\geq\lim_{k\to\infty}\sup_{j\geq k}m(E_j)=\varlimsup_{k\to\infty}m(E_k).\)


28.令\(G\)\(E\)的等測包,\(m^*(E)\leq m(H)=m(H\cap G)+m(H\setminus G)\leq m(G)=m^*(E).\)
29.令\(H\)\(E\)的等測包,\(m^*(E)=m^*(E\cap A)+m^*(E\cap A^c)=m(H)=m(H\cap A)+m(H\cap A^c).\)\(m^*(E\cap A)\leq m(H\cap A),m^*(E\cap A^c)\leq m(H\cap A^c)\)可得\(m^*(E\cap A)=m(H\cap A).\)
30.\(\displaystyle m(\bigcap_{k=1}^\infty E_k)=m([0,1]\setminus(\bigcup_{k=1}^\infty([0,1]\setminus E_k)))=1-m(\bigcup_{k=1}^\infty([0,1]\setminus E_k))\geq1-\sum_{k=1}^\infty m([0,1]\setminus E_k)=1\)

2.1.6