1. 程式人生 > >CodeForces - 724G Xor-matic Number of the Graph

CodeForces - 724G Xor-matic Number of the Graph

examples pro compute sizeof sam class 路徑 fin dir

Discription

You are given an undirected graph, constisting of n vertices and m edges. Each edge of the graph has some non-negative integer written on it.

Let‘s call a triple (u,?v,?s) interesting, if 1?≤?u?<?v?≤?n and there is a path (possibly non-simple, i.e. it can visit the same vertices and edges multiple times) between vertices u

and v such that xor of all numbers written on the edges of this path is equal to s. When we compute the value s for some path, each edge is counted in xor as many times, as it appear on this path. It‘s not hard to prove that there are finite number of such triples.

Calculate the sum over modulo 109?+?7 of the values of s

over all interesting triples.


Input

The first line of the input contains two integers n and m (1?≤?n?≤?100?000, 0?≤?m?≤?200?000) — numbers of vertices and edges in the given graph.

The follow m lines contain three integers ui, vi and ti (1?≤?ui,?vi?≤?n, 0?≤?ti?≤?1018, ui?≠?vi) — vertices connected by the edge and integer written on it. It is guaranteed that graph doesn‘t contain self-loops and multiple edges.

Output

Print the single integer, equal to the described sum over modulo 109?+?7.

Examples Input
4 4
1 2 1
1 3 2
2 3 3
3 4 1
Output
12
Input
4 4
1 2 1
2 3 2
3 4 4
4 1 8
Output
90
Input
8 6
1 2 2
2 3 1
2 4 4
4 5 5
4 6 3
7 8 5
Output
62
Note

In the first example the are 6 interesting triples:

  1. (1,?2,?1)
  2. (1,?3,?2)
  3. (1,?4,?3)
  4. (2,?3,?3)
  5. (2,?4,?2)
  6. (3,?4,?1)
The sum is equal to 1?+?2?+?3?+?3?+?2?+?1?=?12.

In the second example the are 12 interesting triples:

  1. (1,?2,?1)
  2. (2,?3,?2)
  3. (1,?3,?3)
  4. (3,?4,?4)
  5. (2,?4,?6)
  6. (1,?4,?7)
  7. (1,?4,?8)
  8. (2,?4,?9)
  9. (3,?4,?11)
  10. (1,?3,?12)
  11. (2,?3,?13)
  12. (1,?2,?14)
The sum is equal to 1?+?2?+?3?+?4?+?6?+?7?+?8?+?9?+?11?+?12?+?13?+?14?=?90. 根據 Wc 2012 Xor 那道題,我們知道,兩點之間所有路徑xor和是可以通過隨意找一條路徑然後放到環的線性基裏xjb異或而得到的,這個不難畫圖發現(模擬中途走去環然後返回的過程)。 於是,本題就是對於每個聯通分量,先隨便搞出一顆dfs樹,並把所有回邊構成的環加到線性基裏。 然後發現任意兩點之間在dfs樹上路徑的xor和就等於他們到跟xor和再xor起來,之後再考慮上線性基,推完一波式子之後直接做就行了。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=100005,ha=1e9+7;
int hd[maxn],to[maxn*4],ne[maxn*4],num,cnt[69][2],tot,n,m,ans;
ll val[maxn*4],ci[69],a[69],Xor[maxn];
bool v[maxn],can[69];

inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;}
inline void addline(int x,int y,ll z){
    to[++num]=y,ne[num]=hd[x],hd[x]=num,val[num]=z;
}

inline int C(int x){ return (x*(ll)(x-1)>>1)%ha;}

inline void update(ll x){
	for(int i=0;i<=60;i++) if(x&ci[i]) can[i]=1;
}

inline void ins(ll x){
	for(int i=60;i>=0;i--) if(x&ci[i]){
		if(!a[i]){ a[i]=x,tot++,update(x); return;}
		x^=a[i];
	}
}

void dfs(int x,int fa){
	v[x]=1;
	for(int i=hd[x];i;i=ne[i]) if(to[i]!=fa){
		if(!v[to[i]]) Xor[to[i]]=Xor[x]^val[i],dfs(to[i],x);
		else ins(Xor[x]^Xor[to[i]]^val[i]);
	}
	
	for(int i=0;i<=60;i++) cnt[i][(Xor[x]&ci[i])?1:0]++;
}

inline void solve(){
	for(int o=1;o<=n;o++) if(!v[o]){
        memset(cnt,0,sizeof(cnt));
        memset(a,0,sizeof(a)),tot=0;
        memset(can,0,sizeof(can));
		dfs(o,0);
        
        /*
		for(int i=0;i<=60;i++)
	        for(int j=1;j<=n;j++) cnt[i][(Xor[j]&ci[i])?1:0]++;
	    */
	    
    	for(int i=0,now;i<=60;i++){
            now=0;
            
            if(can[i]){
            	ADD(now,cnt[i][0]%ha*(ll)cnt[i][1]%ha);
            	ADD(now,add(C(cnt[i][0]),C(cnt[i][1]))%ha);
            	now=now*(ll)(ci[tot-1]%ha)%ha;
    		}
    		else ADD(now,ci[tot]%ha*(ll)cnt[i][0]%ha*(ll)cnt[i][1]%ha);
    		
    		ADD(ans,now*(ll)(ci[i]%ha)%ha);
    	}
    }
}

int main(){
	ci[0]=1;
	for(int i=1;i<=60;i++) ci[i]=ci[i-1]+ci[i-1];
	
	scanf("%d%d",&n,&m);
	int uu,vv; ll ww;
	for(int i=1;i<=m;i++){
	    scanf("%d%d%I64d",&uu,&vv,&ww);
		addline(uu,vv,ww),addline(vv,uu,ww);
    }
    
	solve();
	
	printf("%d\n",ans);
	return 0;
}

CodeForces - 724G Xor-matic Number of the Graph