BZOJ2437 [Noi2011]兔兔與蛋蛋 【博弈論 + 二分圖匹配】
阿新 • • 發佈:2018-07-01
read cls www 判斷 ring get 必須 out AI
題目鏈接
BZOJ2437
題解
和JSOI2014很像
只不過這題動態刪點
如果我們把空位置看做\(X\)的話,就會發現我們走的路徑是一個\(OX\)交錯的路徑
然後將圖二分染色,當前點必勝,當且僅當當前點必須作為最大匹配的匹配點
移動相當於刪點,刪點的話只需打個標記即可
判斷當前點是不是必選,只需嘗試更改當前點匹配點的匹配點即可
#include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt) #define REP(i,n) for (int i = 1; i <= (n); i++) #define mp(a,b) make_pair<int,int>(a,b) #define cls(s) memset(s,0,sizeof(s)) #define cp pair<int,int> #define LL long long int using namespace std; const int maxn = 1605,maxm = 100005,INF = 1000000000; inline int read(){ int out = 0,flag = 1; char c = getchar(); while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();} while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();} return out * flag; } int h[maxn],ne = 1; struct EDGE{int to,nxt;}ed[maxm]; inline void build(int u,int v){ ed[++ne] = (EDGE){v,h[u]}; h[u] = ne; ed[++ne] = (EDGE){u,h[v]}; h[v] = ne; } char s[45][45]; int X[4] = {0,0,-1,1},Y[4] = {-1,1,0,0}; int lk[maxn],vis[maxn],N,M,sx,sy,n; int id[45][45],px[maxn],py[maxn],c[maxn],Out[maxn]; int win[maxn],ans[maxn],ansi; int bd[maxn][maxn]; void dfs(int x,int y,int co){ id[x][y] = ++n; px[n] = x; py[n] = y; c[n] = co; int nx,ny; for (int k = 0; k < 4; k++){ nx = x + X[k]; ny = y + Y[k]; if (nx < 1 || ny < 1 || nx > N || ny > M || s[nx][ny] == s[x][y]) continue; if (id[nx][ny]){ if (!bd[id[nx][ny]][id[x][y]]) build(id[x][y],id[nx][ny]); bd[id[nx][ny]][id[x][y]] = bd[id[x][y]][id[nx][ny]] = true; } else { dfs(nx,ny,co ^ 1); if (!bd[id[nx][ny]][id[x][y]]) build(id[x][y],id[nx][ny]); bd[id[nx][ny]][id[x][y]] = bd[id[x][y]][id[nx][ny]] = true; } } } bool find(int u){ Redge(u) if (!vis[to = ed[k].to] && !Out[to]){ vis[to] = true; if (!lk[to] || find(lk[to])){ lk[to] = u; lk[u] = to; return true; } } return false; } int main(){ N = read(); M = read(); REP(i,N) scanf("%s",s[i] + 1); REP(i,N) REP(j,M) if (s[i][j] == '.'){sx = i,sy = j,s[i][j] = 'X';break;} dfs(sx,sy,0); int K = read() << 1,x,y,nx = sx,ny = sy,u; REP(i,n) if (!c[i]) cls(vis),find(i); REP(i,K){ cls(vis); x = read(); y = read(); Out[u = id[nx][ny]] = true; if (lk[u]){ win[i] = !find(lk[u]); if (win[i]) lk[lk[u]] = 0; } else win[i] = 0; lk[u] = 0; nx = x; ny = y; } win[K] = true; for (int i = 1; i <= K; i += 2) if (win[i] && win[i + 1]) ans[++ansi] = (i + 1) >> 1; printf("%d\n",ansi); REP(i,ansi) printf("%d\n",ans[i]); return 0; }
BZOJ2437 [Noi2011]兔兔與蛋蛋 【博弈論 + 二分圖匹配】