1. 程式人生 > >Yolo系列學習1-Yolov3訓練福彩快三平臺出租自己的數據

Yolo系列學習1-Yolov3訓練福彩快三平臺出租自己的數據

平臺 sprint rectangle 修改文件 ted issues printf res idt

目的:福彩快三平臺出租 haozbbs.com Q1446595067

實現利用yolov3訓練自己的數據集(voc格式)

方法:

1)構建VOC數據集

將你手中的數據集的標註txt修改成voc格式的txt,voc格式如下:

000002.jpg car 44 28 132 121  
000003.jpg car 54 19 243 178  
000004.jpg car 168 6 298 164  

其中第一列為圖片名,第二列為目標類別,最後是目標的包圍框坐標(左上角和右下角坐標)。

批量修改文件名python代碼:

pic_path = "D:/VOCdevkit/VOC2007/JPEGImages/"
piclist = os.listdir(pic_path)
total_num = len(piclist)
i = 1
for pic in piclist:
    if pic.endswith(".jpg"):
        old_path = os.path.join(os.path.abspath(pic_path), pic)
        new_path = os.path.join(os.path.abspath(pic_path), ‘000‘ + format(str(i), ‘0>5‘) + ‘.jpg‘)
        os.renames(old_path, new_path)
        i = i + 1

批量合並文件夾內所有txt文件python代碼:

import os
filedir = "D:/DET/"
filenames=os.listdir(filedir)
f=open(‘train.txt‘,‘w‘)
for filename in filenames:
    filepath = filedir+‘/‘+filename
    for line in open(filepath):
        f.writelines(line)
f.close()

將該train.txt轉換成voc數據所需要的xml,matlab代碼如下:

clc;
clear;

imgpath=‘D:/VOCdevkit/VOC2007/JPEGImages/‘;%圖像存放文件夾
txtpath=‘D:/train.txt‘;%txt文件
xmlpath_new=‘D:/VOCdevkit/VOC2007/Annotations/‘;%修改後的xml保存文件夾
foldername=‘JPEGImages‘;
path=‘/home/zhangzhi/darknet/scripts/VOCdevkit/VOC2007/JPEGImages/‘;

fidin=fopen(txtpath,‘r‘);
lastname=‘begin‘;

while ~feof(fidin)
     tline=fgetl(fidin);
     str = regexp(tline, ‘ ‘,‘split‘);
     filepath=[imgpath,str{1}];
     ppath=[path,str{1}];
     img=imread(filepath);
     [h,w,d]=size(img);
%      imshow(img);
%      rectangle(‘Position‘,[str2double(str{3}),str2double(str{4}),str2double(str{5})-str2double(str{3}),str2double(str{6})-str2double(str{4})],‘LineWidth‘,4,‘EdgeColor‘,‘r‘);
      pause(0.1);

        if strcmp(str{1},lastname)%如果文件名相等,只需增加object
           object_node=Createnode.createElement(‘object‘);
           Root.appendChild(object_node);
           node=Createnode.createElement(‘name‘);
           node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,str{2})));
           object_node.appendChild(node);

           node=Createnode.createElement(‘pose‘);
           node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,‘Unspecified‘)));
           object_node.appendChild(node);

           node=Createnode.createElement(‘truncated‘);
           node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,‘0‘)));
           object_node.appendChild(node);

           node=Createnode.createElement(‘difficult‘);
           node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,‘0‘)));
           object_node.appendChild(node);

           bndbox_node=Createnode.createElement(‘bndbox‘);
           object_node.appendChild(bndbox_node);

           node=Createnode.createElement(‘xmin‘);
           node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(str{3}))));
           bndbox_node.appendChild(node);

           node=Createnode.createElement(‘ymin‘);
           node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(str{4}))));
           bndbox_node.appendChild(node);

           node=Createnode.createElement(‘xmax‘);
           node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(str{5}))));
           bndbox_node.appendChild(node);

           node=Createnode.createElement(‘ymax‘);
           node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(str{6}))));
           bndbox_node.appendChild(node);
        else 
           copyfile(filepath, ‘JPEGImages‘);

           if exist(‘Createnode‘,‘var‘)
              tempname=lastname;
              tempname=strrep(tempname,‘.jpg‘,‘.xml‘);
              xmlwrite(tempname,Createnode);   
           end

            Createnode=com.mathworks.xml.XMLUtils.createDocument(‘annotation‘);
            Root=Createnode.getDocumentElement;
            node=Createnode.createElement(‘folder‘);
            node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,foldername)));
            Root.appendChild(node);
            node=Createnode.createElement(‘filename‘);
            node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,str{1})));
            Root.appendChild(node);
            node=Createnode.createElement(‘path‘);
            node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,ppath)));
            Root.appendChild(node);
            source_node=Createnode.createElement(‘source‘);
            Root.appendChild(source_node);
            node=Createnode.createElement(‘database‘);
            node.appendChild(Createnode.createTextNode(sprintf(‘My Database‘)));
            source_node.appendChild(node);

           size_node=Createnode.createElement(‘size‘);
           Root.appendChild(size_node);

          node=Createnode.createElement(‘width‘);
          node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(w))));
          size_node.appendChild(node);

          node=Createnode.createElement(‘height‘);
          node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(h))));
          size_node.appendChild(node);

         node=Createnode.createElement(‘depth‘);
         node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(d))));
         size_node.appendChild(node);

          node=Createnode.createElement(‘segmented‘);
          node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,‘0‘)));
          Root.appendChild(node);
          object_node=Createnode.createElement(‘object‘);
          Root.appendChild(object_node);
          node=Createnode.createElement(‘name‘);
          node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,str{2})));
          object_node.appendChild(node);

          node=Createnode.createElement(‘pose‘);
          node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,‘Unspecified‘)));
          object_node.appendChild(node);

          node=Createnode.createElement(‘truncated‘);
          node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,‘0‘)));
          object_node.appendChild(node);

          node=Createnode.createElement(‘difficult‘);
          node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,‘0‘)));
          object_node.appendChild(node);

          bndbox_node=Createnode.createElement(‘bndbox‘);
          object_node.appendChild(bndbox_node);

         node=Createnode.createElement(‘xmin‘);
         node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(str{3}))));
         bndbox_node.appendChild(node);

         node=Createnode.createElement(‘ymin‘);
         node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(str{4}))));
         bndbox_node.appendChild(node);

        node=Createnode.createElement(‘xmax‘);
        node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(str{5}))));
        bndbox_node.appendChild(node);

        node=Createnode.createElement(‘ymax‘);
        node.appendChild(Createnode.createTextNode(sprintf(‘%s‘,num2str(str{6}))));
        bndbox_node.appendChild(node);

       lastname=str{1};
        end
        if feof(fidin)
            tempname=lastname;
            tempname=strrep(tempname,‘.jpg‘,‘.xml‘);
            xmlwrite(tempname,Createnode);
        end
end
fclose(fidin);

file=dir(pwd);
for i=1:length(file)
   if length(file(i).name)>=4 && strcmp(file(i).name(end-3:end),‘.xml‘)
    fold=fopen(file(i).name,‘r‘);
    fnew=fopen([xmlpath_new file(i).name],‘w‘);
    line=1;
    while ~feof(fold)
        tline=fgetl(fold);
        if line==1
           line=2;
           continue;
        end
        expression = ‘   ‘;
        replace=char(9);
        newStr=regexprep(tline,expression,replace);
        fprintf(fnew,‘%s\n‘,newStr);
    end
    fprintf(‘已處理%s\n‘,file(i).name);
    fclose(fold);
    fclose(fnew);
    delete(file(i).name);
   end
end

生成的xml如下所示

<annotation>
    <folder>JPEGImages</folder>
    <filename>00000000.jpg</filename>
    <path>/home/zhangzhi/darknet/scripts/VOCdevkit/VOC2007/JPEGImages/00000000.jpg</path>
    <source>
        <database>My Database</database>
    </source>
    <size>
        <width>512</width>
        <height>512</height>
        <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object>
        <name>car</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>277</xmin>
            <ymin>498</ymin>
            <xmax>304</xmax>
            <ymax>511</ymax>
        </bndbox>
    </object>
</annotation>

生成Main中的四個txt(train.txt,val.txt,test.txt,trainval.txt)

txt的內容為沒有後綴名的圖片名稱:

000005
000027
000028
000033
000042
000045
000048
000058

即圖片名字(無後綴),test.txt是測試集,train.txt是訓練集,val.txt是驗證集,trainval.txt是訓練和驗證集。VOC2007中,trainval大概是整個數據集的50%,test也大概是整個數據集的50%;train大概是trainval的50%,val大概是trainval的50%。可參考以下代碼:

%%  
%該代碼根據已生成的xml,制作VOC2007數據集中的trainval.txt;train.txt;test.txt和val.txt  
%trainval占總數據集的50%,test占總數據集的50%;train占trainval的50%,val占trainval的50%;  
%上面所占百分比可根據自己的數據集修改,如果數據集比較少,test和val可少一些  
%註意修改下面四個值  
xmlfilepath=‘F:/VOCdevkit/VOC2007/Annotations/‘;  
txtsavepath=‘F:/VOCdevkit/VOC2007/ImageSets/Main/;  
trainval_percent=0.5;%trainval占整個數據集的百分比,剩下部分就是test所占百分比  
train_percent=0.5;%train占trainval的百分比,剩下部分就是val所占百分比  

%%  
xmlfile=dir(xmlfilepath);  
numOfxml=length(xmlfile)-2;%減去.和..  總的數據集大小  

trainval=sort(randperm(numOfxml,floor(numOfxml*trainval_percent)));  
test=sort(setdiff(1:numOfxml,trainval));  

trainvalsize=length(trainval);%trainval的大小  
train=sort(trainval(randperm(trainvalsize,floor(trainvalsize*train_percent))));  
val=sort(setdiff(trainval,train));  

ftrainval=fopen([txtsavepath ‘trainval.txt‘],‘w‘);  
ftest=fopen([txtsavepath ‘test.txt‘],‘w‘);  
ftrain=fopen([txtsavepath ‘train.txt‘],‘w‘);  
fval=fopen([txtsavepath ‘val.txt‘],‘w‘);  

for i=1:numOfxml  
    if ismember(i,trainval)  
        fprintf(ftrainval,‘%s\n‘,xmlfile(i+2).name(1:end-4));  
            if ismember(i,train)  
                fprintf(ftrain,‘%s\n‘,xmlfile(i+2).name(1:end-4));  
            else  
                fprintf(fval,‘%s\n‘,xmlfile(i+2).name(1:end-4));  
            end  
    else  
        fprintf(ftest,‘%s\n‘,xmlfile(i+2).name(1:end-4));  
    end  
end  
fclose(ftrainval);  
fclose(ftrain);  
fclose(fval);  
fclose(ftest);  

整合文件

新建立一個VOC2007文件夾,在該文件夾下面新建JPEGImages,Annotations,labels,ImageSets文件夾,將所有訓練的圖片均放置在JPEGImages文件夾下,將第二步生成的xml文件放置在Annotations文件夾中,在ImageSets下新建Main文件夾,將第三步生成的四個txt放入其中,將下面步驟生成的文件放置於labels文件夾中

上面步驟的代碼均是在Windows下使用,下面代碼在Ubuntu下使用。生成labels文件:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

#修改
#sets=[(‘2012‘, ‘train‘), (‘2012‘, ‘val‘), (‘2007‘, ‘train‘), (‘2007‘, ‘val‘), (‘2007‘, ‘test‘)]
sets=[(‘2007‘, ‘train‘), (‘2007‘, ‘val‘), (‘2007‘, ‘test‘)]

#修改
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
classes = ["car", "van", "truck ", "bus"]

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(year, image_id):
    in_file = open(‘VOCdevkit/VOC%s/Annotations/%s.xml‘%(year, image_id))
    out_file = open(‘VOCdevkit/VOC%s/labels/%s.txt‘%(year, image_id), ‘w‘)
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find(‘size‘)
    w = int(size.find(‘width‘).text)
    h = int(size.find(‘height‘).text)

    for obj in root.iter(‘object‘):
        difficult = obj.find(‘difficult‘).text
        cls = obj.find(‘name‘).text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find(‘bndbox‘)
        b = (float(xmlbox.find(‘xmin‘).text), float(xmlbox.find(‘xmax‘).text), float(xmlbox.find(‘ymin‘).text), float(xmlbox.find(‘ymax‘).text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + ‘\n‘)

wd = getcwd()

for year, image_set in sets:
    if not os.path.exists(‘VOCdevkit/VOC%s/labels/‘%(year)):
        os.makedirs(‘VOCdevkit/VOC%s/labels/‘%(year))
    image_ids = open(‘VOCdevkit/VOC%s/ImageSets/Main/%s.txt‘%(year, image_set)).read().strip().split()
    list_file = open(‘%s_%s.txt‘%(year, image_set), ‘w‘)
    for image_id in image_ids:
        list_file.write(‘%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n‘%(wd, year, image_id))
        convert_annotation(year, image_id)
    list_file.close()

#如果需要用train和val的數據一起用來訓練,合並文件:
 os.system("cat 2007_train.txt 2007_val.txt > train.txt")
 os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt > train.all.txt")

2)修改yolov3的相關文件

修改cfg/voc.data文件,進行如下修改:

classes= 4  # 自己數據集的類別數  
train  = /home/zhangzhi/darknet/VOCdevkit/2007_train.txt  # train文件的路徑  
valid  = /home/zhangzhi/darknet/VOCdevkit/2007_test.txt   # test文件的路徑  
names = data/voc.names  
backup = backup  

修改data/voc.names文件,對應自己的數據集修改類別。

car
van
truck
bus

下載Imagenet上預先訓練的權重

wget https://pjreddie.com/media/files/darknet53.conv.74

修改cfg/yolov3-voc.cfg

找到文件中類似的部分進行修改,共有3處:

[convolutional]
size=1
stride=1
pad=1
<span style="color:#FF6666;">filters=27</span>
activation=linear

[yolo]
mask = 0,1,2
anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
<span style="color:#FF6666;">classes=4</span>
num=9
jitter=.3
ignore_thresh = .5
truth_thresh = 1
random=1

需要改變filters為num/3(classes+1+4),即3(classes+1+4),參考https://github.com/pjreddie/darknet/issues/582,同時需要修改下面的classes的種類。

3)訓練,測試

./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74

./darknet detector test cfg/voc.data cfg/yolov3-voc.cfg backup/yolov3-voc_final.weights data/dog.jpg

Yolo系列學習1-Yolov3訓練福彩快三平臺出租自己的數據