學完大數據基礎,可以按照我寫的順序學下去
首先給大家介紹什麽叫大數據,大數據最早是在2006年谷歌提出來的,百度給他的定義為巨量數據集合,輔相成在今天大數據技術任然隨著互聯網的發展,更加迅速的成長,小到個人,企業,達到國家安全,大數據的作用可見一斑,也就是近幾年大數據這個概念,隨著雲計算的出現才凸顯出其價值,雲計算與大數據的關系就像硬幣的正反面一樣,相密不可分。但是大數據的人才缺失少之又少,這就拖延了大數據的發展。所以人才培養真的很重要。
大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟件工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
互聯網是個神奇的大網,大數據開發也是一種模式,你如果真想了解大數據,可以來這裏,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
大數據的類型大致可分為三類:要是不懂可以加入大數據學習交流QQ群,一起學習一起進步
傳統企業數據(Traditional enterprise data):包括 CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。
機器和傳感器數據(Machine-generated /sensor data):包括呼叫記錄(Call Detail Records),智能儀表,工業設備傳感器,設備日誌(通常是Digital exhaust),交易數據等。
社交數據(Social data):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平臺。
大數據挖掘商業價值的方法主要分為四種:歡迎加入722680258
客戶群體細分,然後為每個群體量定制特別的服務。
模擬現實環境,發掘新的需求同時提高投資的回報率。
加強部門聯系,提高整條管理鏈條和產業鏈條的效率。
降低服務成本,發現隱藏線索進行產品和服務的創新。
(二)大數據應該要學習什麽呢?
學習大數據,首先我們要學習Java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。
Java:大家都知道Java的方向有JavaSE、JavaEE、JavaME,學習大數據要學習那個方向呢?只需要學習Java的標準版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技術在大數據技術裏用到的並不多,只需要了解就可以了,當然Java怎麽連接數據庫還是要知道的,像JDBC一定要掌握一下,有人說Hibernate或Mybites也能連接數據庫啊,為什麽不學習一下,我這裏不是說學這些不好,而是說學這些可能會用你很多時間,到最後工作中也不常用,我還沒看到誰做大數據處理用到這兩個東西的,當然你的精力很充足的話,可以學學Hibernate或Mybites的原理,不要只學API,這樣可以增加你對Java操作數據庫的理解,因為這兩個技術的核心就是Java的反射加上JDBC的各種使用。
Linux:因為大數據相關軟件都是在Linux上運行的,所以Linux要學習的紮實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟件的運行環境和網絡環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。
學完基礎,還需要學習哪些大數據技術,可以按我寫的順序學下去。
Hadoop:這是現在流行的大數據處理平臺幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裏面包括幾個組件HDFS、MapReduce和YARN,HDFS是存儲數據的地方就像我們電腦的硬盤一樣文件都存儲在這個上面,MapReduce是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。YARN是體現Hadoop平臺概念的重要組件有了它大數據生態體系的其它軟件就能在hadoop上運行了,這樣就能更好的利用HDFS大存儲的優勢和節省更多的資源比如我們就不用再單獨建一個spark的集群了,讓它直接跑在現有的hadoop yarn上面就可以了。其實把Hadoop的這些組件學明白你就能做大數據的處理了,只不過你現在還可能對"大數據"到底有多大還沒有個太清楚的概念,聽我的別糾結這個。等以後你工作了就會有很多場景遇到幾十T/幾百T大規模的數據,到時候你就不會覺得數據大真好,越大越有你頭疼的。當然別怕處理這麽大規模的數據,因為這是你的價值所在,讓那些個搞Javaee的php的html5的和DBA的羨慕去吧。記住學到這裏可以作為你學大數據的一個節點。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟件對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql數據庫,因為一會裝hive的時候要用到,mysql需要掌握到什麽層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的權限,修改root的密碼,創建數據庫。這裏主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql裏的數據導入到Hadoop裏的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要註意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapReduce程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapReduce、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL數據庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是幹嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你幹嗎給我這麽多的數據(比如好幾百G的文件)我怎麽處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列裏你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapReduce處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬盤。特別適合做叠代運算,所以算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
在不久的將來,多智時代一定會徹底走入我們的生活,有興趣入行未來前沿產業的朋友,可以收藏多智時代,及時獲取人工智能、大數據、雲計算和物聯網的前沿資訊和基礎知識,讓我們一起攜手,引領人工智能的未來!
學完大數據基礎,可以按照我寫的順序學下去