NOIp 數據結構專題總結 (2)
阿新 • • 發佈:2018-08-27
https can print i++ with n) warn ble 系列
系列索引:
- NOIp 數據結構專題總結 (1): https://www.cnblogs.com/greyqz/p/9472917.html
- NOIp 數據結構專題總結 (2): https://www.cnblogs.com/greyqz/p/9541371.html
Binary Indexed Tree
a.k.a. Fenwick Tree.
Pure
WARNING: subscripts must begin with \(1, 2, \cdots, n\).
int lowbit(int x) { return x & (-x); } void update(int x, int y) { for (; x <= N; x += lowbit(x)) t[x] += y; } int sum(int x) { // prefix int ret = 0; for (; x; x -= lowbit(x)) ret += t[x]; return ret; } // query sum of [l, r] int query(int l, int r) { return sum(r) - sum(l-1); }
2 Dimensions
void update(int x, int y, int z) { int i = x; while (i <= n) { int j = y; while (j <= m) { t[i][j] += z; j += lowbit(j); } i += lowbit(i); } } int sum(int x, int y) { // prefix int ret = 0, i = x; while (i > 0) { int j = y; while (j > 0) { ret += t[i][j]; j -= lowbit[j]; } i -= lowbit[i]; } return ret; }
Segment Tree
Pure
int t[N << 2]; void change(int k, int l, int r, int x, int v) { if (r < x || l > x) return; if (l == r && l == x) { t[x] = v; // also: t[x] += v; return; } int mid = (l + r) >> 1; change(k<<1, l, mid, x, v); change((k<<1)+1, mid+1, r, x, v); t[k] = t[k<<1] + t[(k<<1)+1]; // update value (*) } int query(int k, int l, int r, int x, int y) { if (y < l || x > r) return 0; if (l >= x && r <= y) return t[k]; int mid = (l + r) >> 1, ret; ret = query(k<<1, l, mid, x, y); ret += query((k<<1)+1, mid+1, r, x, y); // (*) return ret; } change(1, 1, n, x, val); query(1, 1, n, l, r);
*
: changeable. e.g. sum
, max
, min
.
Lazy Tag
void modify(int k, int l, int r, int x, int y, int v) {
if (r < x || l > y) return;
if (l >= x && r <= y) {
lazy[k] += v; // lazy tag
return;
}
int mid = (l + r) >> 1;
modify(k<<1, l, mid, x, y, v);
modify((k<<1)+1, mid+1, r, x, y, v);
}
int query(int k, int l, int r, int x) { // query single point x
if (l == r) return lazy[k];
int mid = (l + r) >> 1;
if (x <= mid) return query(k<<1, l, mid, x) + lazy[k];
else return query((k<<1)+1, mid+1, r, x) + lazy[k];
}
Push down
void add(int k, int l, int r, int v) {
lazy[k] += v;
sum[k] += (r-l+1) * v;
}
void pushdown(int k, int l, int r, int mid) {
if (!lazy[k]) return;
add(k<<1, l, mid, lazy[k]);
add((k<<1)+1, mid+1, r, lazy[k]);
lazy[k] = 0;
}
void modify(int k, int l, int r, int x, int y, int v) {
if (l >= x && r <= y) {
add(k, l, r, v);
return;
}
int mid = (l + r) >> 1;
pushdown(k, l, r, mid);
if (x <= mid) modify(k<<1, l, mid, x, y, v);
if (mid < y) modify((k<<1)+1, mid+1, r, x, y, v);
sum[k] = sum[k<<1] + sum[(k<<1)+1];
}
int query(int k, int l, int r, int x, int y) {
if (l >= x && r <= y) return sum[k];
int mid = (l + r) >> 1, ret = 0;
pushdown(k, l, r, mid);
if (x <= mid) ret += query(k<<1, l, mid, x, y);
if (mid < y) ret += query((k<<1)+1, mid+1, r, x, y);
return ret;
}
同時支持區間乘和區間加:將標記設計為先乘 a 再加 b,那麽區間加時直接加 b 即可,而區間乘時需要將 a 和 b 都乘上一個數。
/* Segment Tree: 同時支持區間乘和區間加
* Au: GG (Luogu P3373)
*/
#include <cstdio>
#define ll long long
const int N = 100002;
int n, m, MOD, data[N], lazy[N<<2], sum[N<<2], lazy2[N<<2];
void build(int k, int l, int r) {
lazy2[k] = 1;
if (l==r) { sum[k] = data[l]; return; }
int mid = l+r >> 1;
build(k<<1, l, mid);
build((k<<1)+1, mid+1, r);
sum[k] = ((ll)sum[k<<1] + sum[(k<<1)+1]) % MOD;
}
void add(int k, int l, int r, int v) {
lazy[k] = ((ll)lazy[k] + v) % MOD;
sum[k] = (sum[k] + (ll)(r-l+1) * v) % MOD;
}
void mul(int k, int l, int r, int v) {
lazy[k] = ((ll)lazy[k] * v) % MOD;
lazy2[k] = ((ll)lazy2[k] * v) % MOD;
sum[k] = ((ll)sum[k] * v) % MOD;
}
void pushdown(int k, int l, int r, int mid) {
if (lazy2[k]!=1) {
mul(k<<1, l, mid, lazy2[k]);
mul((k<<1)+1, mid+1, r, lazy2[k]);
lazy2[k] = 1;
}
if (lazy[k]) {
add(k<<1, l, mid, lazy[k]);
add((k<<1)+1, mid+1, r, lazy[k]);
lazy[k] = 0;
}
}
void modify(int k, int l, int r, int x, int y, int v) {
if (l>=x && r<=y) {add(k, l, r, v); return;}
int mid = l+r >> 1;
pushdown(k, l, r, mid);
if (x<=mid) modify(k<<1, l, mid, x, y, v);
if (y>mid) modify((k<<1)+1, mid+1, r, x, y, v);
sum[k] = ((ll)sum[k<<1] + sum[(k<<1)+1]) % MOD;
}
void modify2(int k, int l, int r, int x, int y, int v) {
if (l>=x && r<=y) {mul(k, l, r, v); return;}
int mid = l+r >> 1;
pushdown(k, l, r, mid);
if (x<=mid) modify2(k<<1, l, mid, x, y, v);
if (y>mid) modify2((k<<1)+1, mid+1, r, x, y, v);
sum[k] = ((ll)sum[k<<1] + sum[(k<<1)+1]) % MOD;
}
int query(int k, int l, int r, int x, int y) {
if (l>=x && r<=y) return sum[k];
int mid = l+r >> 1, res = 0;
pushdown(k, l, r, mid);
if (x<=mid) res = ((ll)res + query(k<<1, l, mid, x, y)) % MOD;
if (y>mid) res = ((ll)res + query((k<<1)+1, mid+1, r, x, y)) % MOD;
return res;
}
int main() {
scanf("%d%d%d", &n, &m, &MOD);
for (int i=1; i<=n; i++)
scanf("%d", &data[i]);
build(1, 1, n);
int opt, a, b, c;
while (m--) {
scanf("%d%d%d", &opt, &a, &b);
if (opt>2) printf("%d\n", query(1, 1, n, a, b));
else {
scanf("%d", &c);
if (opt<2) modify2(1, 1, n, a, b, c);
else modify(1, 1, n, a, b, c);
}
}
return 0;
}
NOIp 數據結構專題總結 (2)