『TensorFlow × MXNet』SSD項目復現經驗
阿新 • • 發佈:2018-08-31
duration create brush backward update smo capacity parameter 最大
每個搜索框的坐標的回歸目標(同上的尋找方法,空位也為0)
負類掩碼,雖然每張圖片裏面通常只有幾個標註的邊框,但SSD會生成大量的錨框。可以想象很多錨框都不會框住感興趣的物體,就是說跟任何對應感興趣物體的表框的IoU都小於某個閾值。這樣就會產生大量的負類錨框,或者說對應標號為0的錨框。對於這類錨框有兩點要考慮的:
1、邊框預測的損失函數不應該包括負類錨框,因為它們並沒有對應的真實邊框
2、因為負類錨框數目可能遠多於其他,我們可以只保留其中的一些。而且是保留那些目前預測最不確信它是負類的,就是對類0預測值排序,選取數值最小的哪一些困難的負類錨框
所以需要使用掩碼,抑制一部分計算出來的loss。
為了加深理解,我對SSD項目進行了復現,基於原版,有按照自己理解的修改,
項目見github:SSD_Realization_TensorFlow、SSD_Realization_MXNet
構建思路按照訓練主函數的步驟順序,文末貼了出來,下面我們按照這個順序簡要介紹一下各個流程的重點,想要詳細了解的建議看一看之前的解讀源碼的對應篇章(tf),或者看看李沐博士的ssd介紹視頻(雖然不太詳細,不過結合講義思路很清晰,參見:『MXNet』第十彈_物體檢測SSD)。
重點說明
SSD架構主要有四個部分,網絡設計、搜索框設計、學習目標處理、損失函數實現。
網絡設計
重點在於正常前向網絡中挑選出的特征層分別添加兩個卷積出口:分類和回歸出口,用於對應後面的每個搜索框的各個類別得分、以及4個坐標值。
搜索框設計
對應網絡的特征層:每個層有若幹搜索框,我們需要搜索框位置形狀信息。對於tf版本我們保存了每個框的中心點以及HW信息,而mx版本我們保存的是左上右下兩個的4個坐標數值,mx更為直觀,但是tf版本節省空間:一組框對應同一個中心點,不過搜索框信息量不大,b無傷大雅。
學習目標處理
個人感覺最為繁瑣,我們需要的的信息包含(此時已經獲得了):一組搜索框(實際上指的是全部搜索框的n4個坐標值),圖片的label、圖片的真實框坐標(對應label數目4),我們需要的就是找到搜索框和真是圖片的標簽聯系,
獲取:
每個搜索框對應的分類(和哪個真實框的IOU最大就選真實框的類別標註給該搜索,也就是說會出現大量的0 class搜索框)
負類掩碼,雖然每張圖片裏面通常只有幾個標註的邊框,但SSD會生成大量的錨框。可以想象很多錨框都不會框住感興趣的物體,就是說跟任何對應感興趣物體的表框的IoU都小於某個閾值。這樣就會產生大量的負類錨框,或者說對應標號為0的錨框。對於這類錨框有兩點要考慮的:
1、邊框預測的損失函數不應該包括負類錨框,因為它們並沒有對應的真實邊框
2、因為負類錨框數目可能遠多於其他,我們可以只保留其中的一些。而且是保留那些目前預測最不確信它是負類的,就是對類0預測值排序,選取數值最小的哪一些困難的負類錨框
所以需要使用掩碼,抑制一部分計算出來的loss。
損失函數
可講的不多,按照公式實現即可,重點也在上一步計算出來的掩碼處理損失函數值一步。
MXNet訓練主函數
if __name__ == ‘__main__‘: batch_size = 4 ctx = mx.cpu(0) # ctx = mx.gpu(0) # box_metric = mx.MAE() cls_metric = mx.metric.Accuracy() ssd = ssd_mx.SSDNet() ssd.initialize(ctx=ctx) # mx.init.Xavier(magnitude=2) cls_loss = util_mx.FocalLoss() box_loss = util_mx.SmoothL1Loss() trainer = mx.gluon.Trainer(ssd.collect_params(), ‘sgd‘, {‘learning_rate‘: 0.01, ‘wd‘: 5e-4}) data = get_iterators(data_shape=304, batch_size=batch_size) for epoch in range(30): # reset data iterators and metrics data.reset() cls_metric.reset() # box_metric.reset() tic = time.time() for i, batch in enumerate(data): start_time = time.time() x = batch.data[0].as_in_context(ctx) y = batch.label[0].as_in_context(ctx) # 將-1占位符改為背景標簽0,對應坐標框記錄為[0,0,0,0] y = nd.where(y < 0, nd.zeros_like(y), y) with mx.autograd.record(): # anchors, 檢測框坐標,[1,n,4] # class_preds, 各圖片各檢測框分類情況,[bs,n,num_cls + 1] # box_preds, 各圖片檢測框坐標預測情況,[bs, n * 4] anchors, class_preds, box_preds = ssd(x, True) # box_target, 檢測框的收斂目標,[bs, n * 4] # box_mask, 隱藏不需要的背景類,[bs, n * 4] # cls_target, 記錄全檢測框的真實類別,[bs,n] box_target, box_mask, cls_target = ssd_mx.training_targets(anchors, class_preds, y) loss1 = cls_loss(class_preds, cls_target) loss2 = box_loss(box_preds, box_target, box_mask) loss = loss1 + loss2 loss.backward() trainer.step(batch_size) if i % 1 == 0: duration = time.time() - start_time examples_per_sec = batch_size / duration sec_per_batch = float(duration) format_str = "[*] step %d, loss=%.2f (%.1f examples/sec; %.3f sec/batch)" print(format_str % (i, nd.sum(loss).asscalar(), examples_per_sec, sec_per_batch)) if i % 500 == 0: ssd.model.save_parameters(‘model_mx_{}.params‘.format(epoch))
TensorFlow訓練主函數
def main(): max_steps = 1500 batch_size = 32 adam_beta1 = 0.9 adam_beta2 = 0.999 opt_epsilon = 1.0 num_epochs_per_decay = 2.0 num_samples_per_epoch = 17125 moving_average_decay = None tf.logging.set_verbosity(tf.logging.DEBUG) with tf.Graph().as_default(): # Create global_step. with tf.device("/device:CPU:0"): global_step = tf.train.create_global_step() ssd = SSDNet() ssd_anchors = ssd.anchors # tfr解析操作放在GPU下有加速,效果不穩定 dataset = tfr_data_process.get_split(‘./TFR_Data‘, ‘voc2012_*.tfrecord‘, num_classes=21, num_samples=num_samples_per_epoch) with tf.device("/device:CPU:0"): # 僅CPU支持隊列操作 image, glabels, gbboxes = tfr_data_process.tfr_read(dataset) image, glabels, gbboxes = preprocess_img_tf.preprocess_image(image, glabels, gbboxes, out_shape=(300, 300)) gclasses, glocalisations, gscores = ssd.bboxes_encode(glabels, gbboxes, ssd_anchors) batch_shape = [1] + [len(ssd_anchors)] * 3 # (1,f層,f層,f層) # Training batches and queue. r = tf.train.batch( # 圖片,中心點類別,真實框坐標,得分 util_tf.reshape_list([image, gclasses, glocalisations, gscores]), batch_size=batch_size, num_threads=4, capacity=5 * batch_size) batch_queue = slim.prefetch_queue.prefetch_queue( r, # <-----輸入格式實際上並不需要調整 capacity=2 * 1) # Dequeue batch. b_image, b_gclasses, b_glocalisations, b_gscores = util_tf.reshape_list(batch_queue.dequeue(), batch_shape) # 重整list predictions, localisations, logits, end_points = ssd.net(b_image, is_training=True, weight_decay=0.00004) ssd.losses(logits, localisations, b_gclasses, b_glocalisations, b_gscores, match_threshold=.5, negative_ratio=3, alpha=1, label_smoothing=.0) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # =================================================================== # # Configure the moving averages. # =================================================================== # if moving_average_decay: moving_average_variables = slim.get_model_variables() variable_averages = tf.train.ExponentialMovingAverage( moving_average_decay, global_step) else: moving_average_variables, variable_averages = None, None # =================================================================== # # Configure the optimization procedure. # =================================================================== # with tf.device("/device:CPU:0"): # learning_rate節點使用CPU(不明) decay_steps = int(num_samples_per_epoch / batch_size * num_epochs_per_decay) learning_rate = tf.train.exponential_decay(0.01, global_step, decay_steps, 0.94, # learning_rate_decay_factor, staircase=True, name=‘exponential_decay_learning_rate‘) optimizer = tf.train.AdamOptimizer( learning_rate, beta1=adam_beta1, beta2=adam_beta2, epsilon=opt_epsilon) tf.summary.scalar(‘learning_rate‘, learning_rate) if moving_average_decay: # Update ops executed locally by trainer. update_ops.append(variable_averages.apply(moving_average_variables)) # Variables to train. trainable_scopes = None if trainable_scopes is None: variables_to_train = tf.trainable_variables() else: scopes = [scope.strip() for scope in trainable_scopes.split(‘,‘)] variables_to_train = [] for scope in scopes: variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope) variables_to_train.extend(variables) losses = tf.get_collection(tf.GraphKeys.LOSSES) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) regularization_loss = tf.add_n(regularization_losses) loss = tf.add_n(losses) tf.summary.scalar("loss", loss) tf.summary.scalar("regularization_loss", regularization_loss) grad = optimizer.compute_gradients(loss, var_list=variables_to_train) grad_updates = optimizer.apply_gradients(grad, global_step=global_step) update_ops.append(grad_updates) # update_op = tf.group(*update_ops) with tf.control_dependencies(update_ops): total_loss = tf.add_n([loss, regularization_loss]) tf.summary.scalar("total_loss", total_loss) # =================================================================== # # Kicks off the training. # =================================================================== # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8) config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options) saver = tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=1.0, write_version=2, pad_step_number=False) if True: import os import time print(‘start......‘) model_path = ‘./logs‘ batch_size = batch_size with tf.Session(config=config) as sess: summary = tf.summary.merge_all() coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) writer = tf.summary.FileWriter(model_path, sess.graph) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) init_op.run() for step in range(max_steps): start_time = time.time() loss_value = sess.run(total_loss) # loss_value, summary_str = sess.run([train_tensor, summary_op]) # writer.add_summary(summary_str, step) duration = time.time() - start_time if step % 10 == 0: summary_str = sess.run(summary) writer.add_summary(summary_str, step) examples_per_sec = batch_size / duration sec_per_batch = float(duration) format_str = "[*] step %d, loss=%.2f (%.1f examples/sec; %.3f sec/batch)" print(format_str % (step, loss_value, examples_per_sec, sec_per_batch)) # if step % 100 == 0: # accuracy_step = test_cifar10(sess, training=False) # acc.append(‘{:.3f}‘.format(accuracy_step)) # print(acc) if step % 500 == 0 and step != 0: saver.save(sess, os.path.join(model_path, "ssd_tf.model"), global_step=step) coord.request_stop() coord.join(threads)
『TensorFlow × MXNet』SSD項目復現經驗