AssociatedObject關聯對象原理實現
介紹
關聯對象(AssociatedObject)是Objective-C 2.0運行時的一個特性,允許開發者對已經存在的類在擴展中添加自定義的屬性。在實際生產過程中,比較常用的方式是給分類(Category)添加成員變量。
例子
#import <objc/runtime.h> @interface NSObject (AssociatedObject) @property (nonatomic, strong) id property; @end @implementation NSObject (AssociatedObject) @dynamic property; - (id)property { return objc_getAssociatedObject(self, _cmd); } - (void)setProperty:(NSString *)property { objc_setAssociatedObject(self, @selector(property), property, OBJC_ASSOCIATION_RETAIN_NONATOMIC); } @end
通過實現代碼可以稍微分析下,objc_getAssociatedObject
拿著不變的指針地址(示例傳入selector作為參數,實際是void*),從實例中獲取需要的對象。objc_setAssociatedObject
根據傳入的參數協議,保存指定的對象。
參數協議
typedef OBJC_ENUM(uintptr_t, objc_AssociationPolicy) { OBJC_ASSOCIATION_ASSIGN = 0, /**< Specifies a weak reference to the associated object. */ OBJC_ASSOCIATION_RETAIN_NONATOMIC = 1, /**< Specifies a strong reference to the associated object. The association is not made atomically. */ OBJC_ASSOCIATION_COPY_NONATOMIC = 3, /**< Specifies that the associated object is copied. The association is not made atomically. */ OBJC_ASSOCIATION_RETAIN = 01401, /**< Specifies a strong reference to the associated object. The association is made atomically. */ OBJC_ASSOCIATION_COPY = 01403 /**< Specifies that the associated object is copied. The association is made atomically. */ };
其實這五個協議就是我們平時定義屬性時使用的,需要註意的是,雖然蘋果在註釋中說 OBJC_ASSOCIATION_ASSIGN
相當於一個 weak reference
,但其實等於 assign/unsafe_unretained
。
對於與weak
的區別不在本文討論範圍內,淺顯的區別在於變量釋放後,weak
會把引用置空,unsafe_unretained
會保留內存地址,一旦獲取可能會野指針閃退。
總結
我們知道,如果類要添加變量,只有在objc_allocateClassPair
與objc_registerClassPair
之間addIvar
。等類註冊後,變量結構就不允許再被改變,這是為了防止兩個相同類的實例擁有不同變量導致運行困惑。
那麽在runtime時給實例添加變量,又不改變類內部變量結構,關聯對象就是一個比較好的做法。
關聯對象的實現
外部方法
//Sets an associated value for a given object using a given key and association policy.
void objc_setAssociatedObject(id object, const void * key, id value, objc_AssociationPolicy policy);
//Returns the value associated with a given object for a given key.
id objc_getAssociatedObject(id object, const void * key);
//Removes all associations for a given object.
void objc_removeAssociatedObjects(id object);
相比剛剛例子中的用法,多了一個objc_removeAssociatedObjects
,那麽可不可以用這個方法來刪除不用的關聯對象呢?
蘋果的文檔中解釋說這個方法主要用來還原對象到類初始的狀態,會移除所有的關聯,包括其他模塊添加的,因此應該用 objc_setAssociatedObject(..,nil,..)
的方式去卸載。
Setter實現
objc_setAssociatedObject
實際調用的是_object_set_associative_reference
void _object_set_associative_reference(id object, void *key, id value, uintptr_t policy) {
// retain the new value (if any) outside the lock.
ObjcAssociation old_association(0, nil);
id new_value = value ? acquireValue(value, policy) : nil;
{
AssociationsManager manager;
AssociationsHashMap &associations(manager.associations());
disguised_ptr_t disguised_object = DISGUISE(object);
if (new_value) {
// break any existing association.
AssociationsHashMap::iterator i = associations.find(disguised_object);
if (i != associations.end()) {
// secondary table exists
ObjectAssociationMap *refs = i->second;
ObjectAssociationMap::iterator j = refs->find(key);
if (j != refs->end()) {
old_association = j->second;
j->second = ObjcAssociation(policy, new_value);
} else {
(*refs)[key] = ObjcAssociation(policy, new_value);
}
} else {
// create the new association (first time).
ObjectAssociationMap *refs = new ObjectAssociationMap;
associations[disguised_object] = refs;
(*refs)[key] = ObjcAssociation(policy, new_value);
object->setHasAssociatedObjects();
}
} else {
// setting the association to nil breaks the association.
AssociationsHashMap::iterator i = associations.find(disguised_object);
if (i != associations.end()) {
ObjectAssociationMap *refs = i->second;
ObjectAssociationMap::iterator j = refs->find(key);
if (j != refs->end()) {
old_association = j->second;
refs->erase(j);
}
}
}
}
// release the old value (outside of the lock).
if (old_association.hasValue()) ReleaseValue()(old_association);
}
內存管理
static id acquireValue(id value, uintptr_t policy) {
switch (policy & 0xFF) {
case OBJC_ASSOCIATION_SETTER_RETAIN:
return objc_retain(value);
case OBJC_ASSOCIATION_SETTER_COPY:
return ((id(*)(id, SEL))objc_msgSend)(value, SEL_copy);
}
return value;
}
static void releaseValue(id value, uintptr_t policy) {
if (policy & OBJC_ASSOCIATION_SETTER_RETAIN) {
return objc_release(value);
}
}
ObjcAssociation old_association(0, nil);
id new_value = value ? acquireValue(value, policy) : nil;
{
old_association = ...
}
if (old_association.hasValue()) ReleaseValue()(old_association);
我們摘出與對象內存相關的代碼仔細分析下,首先把新傳入的對象,根據協議進行retain/copy
,在賦值的過程中獲取舊值,在方法結束前release
。
賦值
AssociationsManager manager;
AssociationsHashMap &associations(manager.associations());
disguised_ptr_t disguised_object = DISGUISE(object);
if (new_value) {
//需要賦值
AssociationsHashMap::iterator i = associations.find(disguised_object);
if (i != associations.end()) {
//找到了這個對象的關聯表
ObjectAssociationMap *refs = i->second;
ObjectAssociationMap::iterator j = refs->find(key);
if (j != refs->end()) {
//找到了這個key的關聯對象
old_association = j->second;
j->second = ObjcAssociation(policy, new_value);
} else {
//沒找到,新增一個關聯
(*refs)[key] = ObjcAssociation(policy, new_value);
}
} else {
//沒找到,創建一個新的關聯表
ObjectAssociationMap *refs = new ObjectAssociationMap;
associations[disguised_object] = refs;
(*refs)[key] = ObjcAssociation(policy, new_value);
object->setHasAssociatedObjects();
}
}
先了解一下AssociationsManager
與AssociationsHashMap
class AssociationsManager {
static AssociationsHashMap *_map;
public:
AssociationsHashMap &associations() {
if (_map == NULL)
_map = new AssociationsHashMap();
return *_map;
}
};
class AssociationsHashMap : public unordered_map<disguised_ptr_t, ObjectAssociationMap *, DisguisedPointerHash, DisguisedPointerEqual, AssociationsHashMapAllocator>;
class ObjectAssociationMap : public std::map<void *, ObjcAssociation, ObjectPointerLess, ObjectAssociationMapAllocator>;
AssociationsManager
通過一個以指針地址為主鍵,值為關聯表的哈希表,來管理應用內所有的關聯對象。
首先以對象的指針地址去尋找關聯表,再通過指定的鍵值查找關聯關系,從而獲取關聯對象。
刪除
AssociationsHashMap::iterator i = associations.find(disguised_object);
if (i != associations.end()) {
ObjectAssociationMap *refs = i->second;
ObjectAssociationMap::iterator j = refs->find(key);
if (j != refs->end()) {
old_association = j->second;
refs->erase(j);
}
}
和修改方法類似,找到關聯關系後,執行哈希表的erase
方法刪除。
Getter實現
objc_getAssociatedObject
實際調用的是_object_get_associative_reference
id _object_get_associative_reference(id object, void *key) {
id value = nil;
uintptr_t policy = OBJC_ASSOCIATION_ASSIGN;
{
AssociationsManager manager;
AssociationsHashMap &associations(manager.associations());
disguised_ptr_t disguised_object = DISGUISE(object);
AssociationsHashMap::iterator i = associations.find(disguised_object);
if (i != associations.end()) {
ObjectAssociationMap *refs = i->second;
ObjectAssociationMap::iterator j = refs->find(key);
if (j != refs->end()) {
ObjcAssociation &entry = j->second;
value = entry.value();
policy = entry.policy();
if (policy & OBJC_ASSOCIATION_GETTER_RETAIN) {
objc_retain(value);
}
}
}
}
if (value && (policy & OBJC_ASSOCIATION_GETTER_AUTORELEASE)) {
objc_autorelease(value);
}
return value;
}
查找哈希表的方法和Setter一樣,區別在於如果策略中需要retain和autorelease的話,都需要處理。那麽是怎麽約定這些策略呢?
enum {
OBJC_ASSOCIATION_SETTER_ASSIGN = 0,
OBJC_ASSOCIATION_SETTER_RETAIN = 1,
OBJC_ASSOCIATION_SETTER_COPY = 3, // NOTE: both bits are set, so we can simply test 1 bit in releaseValue below.
OBJC_ASSOCIATION_GETTER_READ = (0 << 8),
OBJC_ASSOCIATION_GETTER_RETAIN = (1 << 8),
OBJC_ASSOCIATION_GETTER_AUTORELEASE = (2 << 8)
};
typedef OBJC_ENUM(uintptr_t, objc_AssociationPolicy) {
OBJC_ASSOCIATION_ASSIGN = 0,
OBJC_ASSOCIATION_RETAIN_NONATOMIC = 1,
OBJC_ASSOCIATION_COPY_NONATOMIC = 3,
OBJC_ASSOCIATION_RETAIN = 01401,
OBJC_ASSOCIATION_COPY = 01403
};
OBJC_ASSOCIATION_RETAIN = 01401
,其中01401
開頭是0
,所以是八進制數字,翻譯為二進制就是0000 0011 0000 0001
,取位判斷就是OBJC_ASSOCIATION_SETTER_RETAIN
OBJC_ASSOCIATION_GETTER_RETAIN
OBJC_ASSOCIATION_GETTER_AUTORELEASE
。
在保存的時候,需要retain
,在獲取的時候,需要先retain
增加引用計數,再執行autorelease
等待釋放,從而實現原子性。
Remove實現
objc_removeAssociatedObjects
會判斷對象是否存在關聯,然後再執行_object_set_associative_reference
void _object_remove_assocations(id object) {
vector< ObjcAssociation,ObjcAllocator<ObjcAssociation> > elements;
{
AssociationsManager manager;
AssociationsHashMap &associations(manager.associations());
if (associations.size() == 0) return;
disguised_ptr_t disguised_object = DISGUISE(object);
AssociationsHashMap::iterator i = associations.find(disguised_object);
if (i != associations.end()) {
// copy all of the associations that need to be removed.
ObjectAssociationMap *refs = i->second;
for (ObjectAssociationMap::iterator j = refs->begin(), end = refs->end(); j != end; ++j) {
elements.push_back(j->second);
}
// remove the secondary table.
delete refs;
associations.erase(i);
}
}
// the calls to releaseValue() happen outside of the lock.
for_each(elements.begin(), elements.end(), ReleaseValue());
}
實現方式也可以看出為什麽在介紹裏不推薦使用,因為會遍歷所有的關聯對象,並且全部釋放,可能會造成別的模塊功能缺陷。
判斷關聯對象
比較有意思的是判斷對象是否有關聯對象的實現。
inline bool objc_object::hasAssociatedObjects()
{
if (isTaggedPointer()) return true;
if (isa.nonpointer) return isa.has_assoc;
return true;
}
inline void objc_object::setHasAssociatedObjects()
{
if (isTaggedPointer()) return;
retry:
isa_t oldisa = LoadExclusive(&isa.bits);
isa_t newisa = oldisa;
if (!newisa.nonpointer || newisa.has_assoc) {
ClearExclusive(&isa.bits);
return;
}
newisa.has_assoc = true;
if (!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)) goto retry;
}
默認返回的結果都是true
,只有在64位系統下,才保存一個標記位。這麽處理我推測是為了加快釋放周期速度,在析構對象時,會根據這個方法判斷是否需要釋放關聯對象。試想如果每次都查詢哈希表,執行效率必定會降低,不如都先通過,之後再做處理。
關於
nonpointer
不在本文介紹範圍內,簡單描述為在64位系統下,指針地址保存不僅僅為內存地址,還存有其他標記信息,包括本文涉及的has_assoc。
taggedPointer
是一種優化策略,把簡單的數字或字符串信息直接保存在指針地址中,從而不申請額外內存加快運行效率。
總結
關聯對象的實現不復雜,保存的方式為一個全局的哈希表,存取都通過查詢表找到關聯來執行。哈希表的特點就是犧牲空間換取時間,所以執行速度也可以保證。
問答
關聯對象有什麽應用?
關聯對象可以在運行時給指定對象綁定一個有生命周期的變量。
1.由於不改變原類的實現,所以可以給原生類或者是打包的庫進行擴展,一般配合Category實現完整的功能。
2.ObjC類定義的變量,由於runtime的特性,都會暴露到外部,使用關聯對象可以隱藏關鍵變量,保證安全。
3.可以用於KVO,使用關聯對象作為觀察者,可以避免觀察自身導致循環。
系統如何管理關聯對象?
系統通過管理一個全局哈希表,通過對象指針地址和傳遞的固定參數地址來獲取關聯對象。根據setter
傳入的參數協議,來管理對象的生命周期。
其被釋放的時候需要手動將其指針置空麽?
當對象被釋放時,如果設置的協議是OBJC_ASSOCIATION_ASSIGN
,那麽他的關聯對象不會減少引用計數,其他的協議都會減少從而釋放關聯對象。
unsafe_unretain
一般認為外部有對象控制,所以對象不用處理,因此不管什麽協議,對象釋放時都無需手動講關聯對象置空。
AssociatedObject關聯對象原理實現