UVA12888 【Count LCM】
阿新 • • 發佈:2018-10-31
題意:求\(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]\)
\(assume\ n<m\)
\(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]\)
\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|gcd(i,j)}\mu(x)\)
\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i,x|j}\mu(x)\)
\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}[x|i,x|j]\mu(x)\)
\(\Longrightarrow \sum_{x=1}^{n}\sum_{i=1}^{n/x}\sum_{j=1}^{m/x}\mu(x)\)
\(\Longrightarrow \sum_{x=1}^{n}\lfloor\frac nx\rfloor\lfloor\frac mx\rfloor\mu(x)\)
那麼我們\(O(n)\)篩出\(\mu(x)\)函式的字首和,再用整除分塊優化,最終時間複雜度為\(O(T\sqrt{n})\)
#include <bits/stdc++.h> #define ll long long using namespace std; const int maxn=1000000+10; ll n,m,prim[maxn],vis[maxn],mu[maxn],cnt,ans; void getmu(ll n){ register ll i,j; mu[1]=1; for(i=2;i<=n;i++){ if(!vis[i]){prim[++cnt]=i;mu[i]=-1;} for(j=1;i*prim[j]<=n&&j<=cnt;j++){ vis[i*prim[j]]=1; if(i%prim[j]==0) break; mu[i*prim[j]]=-mu[i]; } } for(i=1;i<=n;i++) mu[i]+=mu[i-1]; } int main() { getmu(1000000); register ll T,l,r; scanf("%d",&T); while(T--){ scanf("%lld%lld",&n,&m); if(n>m) swap(n,m); ans=0; for(l=1;l<=n;l=r+1){ r=min(n/(n/l),m/(m/l)); ans+=(n/l)*(m/l)*(mu[r]-mu[l-1]); } printf("%lld\n",ans); } return 0; }