魯賓遜非標準微積分全面覆蓋國內高等數學課程內容 此時此刻,“預告:電子版微積分投放安排,陽光事業在陽光下進行”,2018年08月05日發表, 11:58:31 yuanmeng001 此刻閱讀數:
魯賓遜非標準微積分全面覆蓋國內高等數學課程內容
此時此刻,“預告:電子版微積分投放安排,陽光事業在陽光下進行”,2018年08月05日發表, 11:58:31 yuanmeng001 此刻閱讀數:10101。這裡的“10101”是一個好數字,不拐彎抹角,有話直說。
我們向全國普通高校投放魯賓遜非標準微積分教科書電子版,有什麼價值?也就是說,魯賓遜非標準微積分的內容是否全面覆蓋國內高等數學課程內容?是與不是,讓資料;來說話。
訪問“無窮小微積分”網站,下載魯賓遜非標準微積分,從中提取內容目錄,與國內高等數學教科書進行對比研究即可。請讀者見本文附件。
袁萌 陳啟清 10月26日
附:魯賓遜非標準微積分內容目錄
CONTENT
INTRODUCTION xiii
1.REAL AND HVPERREAL NUMBERS 1
1.1 The Real Line 1
1.2 Functions of Real Numbers 6
1.3 Straight Lines 16
1.4 Slope and Velocity; The Hyperreal Line 21
1.5 Infinitesimal, Finite, and Infinite Numbers 27
1.6 Standard Parts 35
Extra Problems for Chapter I 41
2.DIFFERENTIATION 43
2.1 Derivatives 43
2.2 Differentials and Tangent Lines 53
2.3 Derivatives of Rational Functions 60
2.4 Inverse Functions 70
2.5 Transcendental Functions 78
2.6 Chain Rule 85
2.7 Higher Derivatives 94
2.8 Implicit Functions 97
Extra Problems for Chapter 2 103
3.CONTINUOUS FUNCTIONS 105
3.1 How to Set Up a Problem 105
3.2 Related Rates 110
3.3 Limits 117
3.4 Continuity 124
3.5 Maxima and Minima 134
3.6 Maxima and Minima - Applications 144
3.7 Derivatives and Curve Sketching 151
vii
viii CONTENTS
3.8 Properties of Continuous Functions 159
Extra Problems for Chapter 3 171
4.INTEGRATION 175
4.1 The Definite Integral 175
4.2 Fundamental Theorem of Calculus 186
4.3 Indefinite Integrals 198
4.4 Integration by Change of Variables 209
4.5 Area between Two Curves 218
4.6 Numerical Integration 224
Extra Problems for Chapter 4 234
5.LIMITS, ANALYTIC GEOMETRY, AND APPROXIMATIONS 237
5.1 Infinite Limits 237
5.2 L'Hospital's Rule 242
5.3 Limits and Curve Sketching 248
5.4 Parabolas 256
5.5 Ellipses and Hyperbolas 264
5.6 Second Degree Curves 272
5.7 Rotation of Axes 276
5.8 The e, 8 Condition for Limits 282
5.9 Newton's Method 289
5.10 Derivatives and Increments 294
Extra Problems for Chapter 5 300
6.APPLICATIONS OF THE INTEGRAL 302
6.1 Infinite Sum Theorem 302
6.2 Volumes of Solids of Revolution 308
6.3 Length of a Curve 319
6.4 Area of a Surface of Revolution 327
6.5 Averages 336
6.6 Some Applications to Physics 341
6.7 Improper Integrals 351
Extra Problems for Chapter 6 362
7.TRIGONOMETRIC FUNCTIONS 365
7.1 Trigonometry 365
7.2 Derivatives of Trigonometric Functions 373
7.3 Inverse Trigonometric Functions 381
7.4 Integration by Parts 391
7.5 Integrals of Powers of Trigonometric Functions 397
7.6 Trigonometric Substitutions 402
7.7 Polar Coordinates 406
7.8 Slopes and Curve Sketching in Polar Coordinates 412
7.9 Area in Polar Coordinates 420
CONTENTS ix
7.10 Length of a Curve in Polar Coordinates 425
Extra Problems for Chapter 7 428
8.EXPONENTIAL AND LOGARITHMIC FUNCTIONS 431
8.1 Exponential Functions 431
8.2 Logarithmic Functions 436
8.3 Derivatives of Exponential Functions and the Number e 441
8.4 Some Uses of Exponential Functions 449
8.5 Natural Logarithms 454
8.6 Some Differential Equations 461
8.7 Derivatives and Integrals Involving In x 469
8.8 Integration of Rational Functions 474
8.9 Methods of Integration 481
Extra Problems for Chapter 8 489
9. INFINITE SERIES 492
9.1 Sequences 492
9.2 Series 501
9.3 Properties of Infinite Series 507
9.4 Series with Positive Terms 511
9.5 Alternating Series 517
9.6 Absolute and Conditional Convergence 521
9.7 Power Series 528
9.8 Derivatives and Integrals of Power Series 533
9.9 Approximations by Power Series 540
9.10 Taylor's Formula 547
9.11 Taylor Series 554
Extra Problems for Chapter 9 561
10. VECTORS 564
10.1 Vector Algebra 564
10.2 Vectors and Plane Geometry 576
10.3 Vectors and Lines in Space 585
10.4 Products of Vectors 593
10.5 Planes in Space 604
10.6 Vector Valued Functions 615
10.7 Vector Derivatives 620
10.8 Hyperreal Vectors 627
Extra Problems for Chapter I 0 635
11.。. PARTIAL DIFFERENTIATION 639
II. I Surfaces 639
11.2 Continuous Functions of Two or More Variables 651
11.3 Partial Derivatives 656
11.4 Total Differentials and Tangent Planes 662
X CONTENTS
11.5 Chain Rule
11.6 Implicit Functions
11.7 Implicit Functions
11.8 Higher Partial Derivatives
Extra Problems for Chapter II
12 MULTIPLE INTEGRALS
12.1 Double Integrals
12.2 Iterated Integrals
12.3 Infinite Sum Theorem and Volume
12.4 Applications to Physics
12.5
12.7 Applications to Physics
Extra Problems for Chapter 12
13 VECTOR CALCULUS
13.1 Directional Derivatives and Gradients
13.2 Line Integrals
13.3 Independence of Path
13.4 Green's Theorem
13.5 Surface Area and Surface Integrals
13.6 Theorems of Stokes and Gauss
Extra Problems for Chapter 13
14 DIFFERENTIAL EQUATIONS
Equations with
14.1 Complex Numbers
14.2 Separable Variables
14.3 First Order
14.4 Homogeneous Linear Equations
14.5 First Order Linear Equations
14.6 Existence and
14.7 Approximation of Solutions
Complex Numbers
Second Order Homogeneous Linear Equations
Second Order Linear Equations(全文完)