1. 程式人生 > >[loj2736][JOISC 2016 Day3]回轉壽司——分塊+堆 dalaos' blogs Some Links

[loj2736][JOISC 2016 Day3]回轉壽司——分塊+堆 dalaos' blogs Some Links

題目大意:

給出一個有 N N 個點的環,環上各點有一個初始權值 a i a_i
給出 Q

Q 個詢問,每次詢問給出一個區間 [ l , r ] [l,r] 和一個值 A
A
,對於 A A 的變動定義如下( r r 可能會小於 l
l
因為是環形):

for (int i = l; i <= r; i++) if(a[i] > A) swap(a[i],A);

對於每個詢問,回答遍歷完區間 [ l , r ] [l,r] A A 的最終值。
注:我們按逆時針方向在環上編號,並規定 [ l , r ] [l,r] 為從位置編號為 l l 的點逆時針遍歷至位置編號為 r r 的點所經過點的集合。

思路:

這種看起來怎麼都不好做的題目考慮分塊。
對於這個操作,我們對於每一塊顯然只需要取出其中最大的元素即可,用一個堆來維護每一個塊的中的元素。
但是對於邊角塊,修改的時候可以暴力修改,可我們也需要知道每一個元素的具體位置,於是這裡有了一種重構的操作:
我們將每一次放入這個塊內的元素記錄下來,按照從小到大的順序進行那種交換的操作,只考慮最終的結果,不難發現這樣是正確的,用一個小根堆維護即可。
時間複雜度 Θ ( n n log n ) \Theta(n\sqrt {n}\log n)

#include<bits/stdc++.h>

#define REP(i,a,b) for(int i=a,i##_end_=b;i<=i##_end_;++i)
#define DREP(i,a,b) for(int i=a,i##_end_=b;i>=i##_end_;--i)
#define debug(x) cout<<#x<<"="<<x<<endl
typedef long long ll;

using namespace std;

void File(){
	freopen("in.in","r",stdin);
	freopen("in.out","w",stdout);
}

template<typename T>void read(T &_){
	T __=0,mul=1; char ch=getchar();
	while(!isdigit(ch)){
		if(ch=='-')mul=-1;
		ch=getchar();
	}
	while(isdigit(ch))__=(__<<1)+(__<<3)+(ch^'0'),ch=getchar();
	_=__*mul;
}

const int maxn=4e5+10;
const int maxb=800+10;
const int B=600;
int n,q,a[maxn],bel[maxn],L[maxb],R[maxb];
priority_queue<int>big[maxb];
priority_queue<int,vector<int>,greater<int> >small[maxb];

void rebuild(int id){
	if(small[id].empty())return;
	REP(i,L[id],R[id]){
		if(a[i]>small[id].top()){
			int t=small[id].top();
			small[id].pop();
			small[id].push(a[i]);
			a[i]=t;
		}
	}
	while(!small[id].empty())small[id].pop();
}

int modify_block(int l,int r,int x){
	int id=bel[l];
	REP(i,l,r)if(a[i]>x)swap(x,a[i]);
	while(!big[id].empty())big[id].pop();
	REP(i,L[id],R[id])big[id].push(a[i]);
	//REP(i,L[id],R[id])cout<<a[i]<<" ";
	//cout<<endl;
	return x;
}

int modify(int l,int r,int x){
	//debug(l); debug(r);
	int bl=bel[l],br=bel[r],t;
	rebuild(bel[l]); rebuild(bel[r]);
	if(bl==br)return modify_block(l,r,x);
	else{
		x=modify_block(l,R[bl],x);
		REP(i,bl+1,br-1)if(big[i].top()>x){
			t=big[i].top(); big[i].pop();
			big[i].push(x); small[i].push(x);
			x=t;
		}
		return modify_block(L[br],r,x);
	}
}

void init(){
	read(n); read(q);
	REP(i,1,n)read(a[i]);

	memset(L,63,sizeof(L));
	memset(R,-1,sizeof(R));
	REP(i,1,n){
		bel[i]=(i-1)/B+1;
		L[bel[i]]=min(L[bel[i]],i);
		R[bel[i]]=max(R[bel[i]],i);
	}

	REP(i,1,n)big[bel[i]].push(a[i]);
}

void work(){
	int l,r,x;
	REP(i,1,q){
		read(l),read(r),read(x);
		if(l<=r)printf("%d\n",modify(l,r,x));
		else printf("%d\n",modify(1,r,modify(l,n,x)));
	}
}

int main(){
	//File();
	init();
	work();
	return 0;
}