關於tensorflow中Dataset圖片的批量讀取以及維度的操作
阿新 • • 發佈:2018-11-06
三維的讀取圖片(w, h, c):
import tensorflow as tf import glob import os def _parse_function(filename): # print(filename) image_string = tf.read_file(filename) image_decoded = tf.image.decode_image(image_string) # (375, 500, 3) image_resized = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200) return image_resized with tf.Session() as sess: print( sess.run( img ).shape )
讀取批量圖片的讀取圖片(b, w, h, c):
import tensorflow as tf import glob import os ''' Dataset 批量讀取圖片 ''' def _parse_function(filename): # print(filename) image_string = tf.read_file(filename) image_decoded = tf.image.decode_image(image_string) # (375, 500, 3) image_decoded = tf.expand_dims(image_decoded, axis=0) image_resized = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200) return image_resized img = _parse_function('../pascal/VOCdevkit/VOC2012/JPEGImages/2007_000068.jpg') # image_resized = tf.image.resize_image_with_crop_or_pad( tf.truncated_normal((1,220,300,3))*10, 200, 200) 這種四維 形式是可以的 with tf.Session() as sess: print( sess.run( img ).shape ) #直接初始化就可以 ,轉換成四維報錯誤,不知道為什麼,若誰想明白,請留言 報錯誤 #InvalidArgumentError (see above for traceback): Input shape axis 0 must equal 4, got shape [5]
Databae的操作:
import tensorflow as tf import glob import os ''' Dataset 批量讀取圖片: 原因: 1. 先定義圖片名的list,存放在Dataset中 from_tensor_slices() 2. 對映函式, 在函式中,對list中的圖片進行讀取,和resize,細節 tf.read_file(filename) 返回的是三維的,因為這個每次取出一張圖片,放進佇列中的,不需要轉化為四維 然後對圖片進行resize, 然後每個batch進行訪問這個函式 ,所以get_next() 返回的是 [batch, w, h, c ] 3. 進行shuffle , batch repeat的設定 4. iterator = dataset.make_one_shot_iterator() 設定迭代器 5. iterator.get_next() 獲取每個batch的圖片 ''' def _parse_function(filename): # print(filename) image_string = tf.read_file(filename) image_decoded = tf.image.decode_image(image_string) #(375, 500, 3) ''' Tensor` with type `uint8` with shape `[height, width, num_channels]` for BMP, JPEG, and PNG images and shape `[num_frames, height, width, 3]` for GIF images. ''' # image_resized = tf.image.resize_images(label, [200, 200]) ''' images 三維,四維的都可以 images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The new size for the images. ''' image_resized = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200) # return tf.squeeze(mage_resized,axis=0) return image_resized filenames = glob.glob( os.path.join('../pascal/VOCdevkit/VOC2012/JPEGImages', "*." + 'jpg') ) dataset = tf.data.Dataset.from_tensor_slices((filenames)) dataset = dataset.map(_parse_function) dataset = dataset.shuffle(10).batch(2).repeat(10) iterator = dataset.make_one_shot_iterator() img = iterator.get_next() with tf.Session() as sess: # print( sess.run(img).shape ) #(4, 200, 200, 3) for _ in range (10): print( sess.run(img).shape )