CodeForces - 940F Machine Learning —— 帶修改莫隊
You come home and fell some unpleasant smell. Where is it coming from?
You are given an array a. You have to answer the following queries:
You are given two integers l and r. Let ci be the number of occurrences of i in al: r, where al: r is the subarray of a from l-th element to r-th inclusive. Find the Mex of {c0, c1, …, c109}
You are given two integers p to x. Change ap to x.
The Mex of a multiset of numbers is the smallest non-negative integer not in the set.
Note that in this problem all elements of a are positive, which means that c0 = 0 and 0 is never the answer for the query of the second type.
Input
The first line of input contains two integers n and q (1 ≤ n, q ≤ 100 000) — the length of the array and the number of queries respectively.
The second line of input contains n integers — a1, a2, …, an (1 ≤ ai ≤ 109).
Each of the next q lines describes a single query.
The first type of query is described by three integers ti = 1, li, ri, where 1 ≤ li ≤ ri ≤ n — the bounds of the subarray.
The second type of query is described by three integers ti = 2, pi, xi, where 1 ≤ pi ≤ n is the index of the element, which must be changed and 1 ≤ xi ≤ 109 is the new value.
Output
For each query of the first type output a single integer — the Mex of {c0, c1, …, c109}.
Example
Input
10 4
1 2 3 1 1 2 2 2 9 9
1 1 1
1 2 8
2 7 1
1 2 8
Output
2
3
2
Note
The subarray of the first query consists of the single element — 1.
The subarray of the second query consists of four 2s, one 3 and two 1s.
The subarray of the fourth query consists of three 1s, three 2s and one 3.
題意:
給你n個數,有兩個操作,1 l r表示在l到r這段區間,詢問{c0,c1,c2,⋯,c109}的Mex,而ci表示數值i在l r中的出現次數,Mex代表未出現的最小的正整數。舉個例子:1 2 3 4 3 2 2 ,最小為4,1 2 3 3 2 1最小是1.。。。2 p x 代表把a[p]改成x
題解:
帶修莫隊,cnt1[x]維護x出現的次數cnt2[x]維護出現x次的數有多少個。把所有2的操作記錄下來,在記錄tim代表這個1操作之前有多少2操作,如果在莫隊的時候的t小了,那就增加2操作,反之減少
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int len;
struct node
{
int l,r,t,bl,br,indx;
node(){}
node(int l,int r,int t,int indx):l(l),r(r),t(t),indx(indx){
bl=l/len,br=r/len;
}
bool operator< (const node& a)const
{
if(bl==a.bl&&br==a.br)
return t<a.t;
if(bl==a.bl)
return br<a.br;
return bl<a.bl;
}
}que[N];
struct query
{
int pos,pre,val;// 位置,上一個數,當前的數
query(){}
query(int pos,int pre,int val):pos(pos),pre(pre),val(val){}
}c[N];
int cnt1[2*N],cnt2[2*N],a[N],b[N*2],now[N],cnt,ans[N];
void add(int pos)
{
cnt2[cnt1[pos]]--;
cnt1[pos]++;
cnt2[cnt1[pos]]++;
}
void del(int pos)
{
cnt2[cnt1[pos]]--;
cnt1[pos]--;
cnt2[cnt1[pos]]++;
}
int ll,rr;
void change(int pos,int x)
{
if(pos>=ll&&pos<=rr){
del(now[pos]);
add(x);
}
now[pos]=x;
}
int main()
{
int n,q;
scanf("%d%d",&n,&q);
len=pow(n,0.666667);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
now[i]=a[i];
b[++cnt]=a[i];
}
/*for(int i=1;i<=n;i++)
cout<<now[i]<<" ";
cout<<endl;*/
int op,qnum=0,tim=0;
for(int i=1;i<=q;i++)
{
scanf("%d%d%d",&op,&ll,&rr);
if(op==1)
que[++qnum]=node(ll,rr,tim,qnum);
else
b[++cnt]=rr,c[++tim]=query(ll,now[ll],rr),now[ll]=rr;
}
/*for(int i=1;i<=n;i++)
cout<<now[i]<<" ";
cout<<endl;*/
sort(b+1,b+1+cnt);
sort(que+1,que+qnum+1);
int all=unique(b+1,b+1+cnt)-b-1;
for(int i=1;i<=n;i++)
now[i]=lower_bound(b+1,b+1+all,a[i])-b;
for(int i=1;i<=tim;i++)
{
c[i].pre=lower_bound(b+1,b+1+all,c[i].pre)-b;
c[i].val=lower_bound(b+1,b+1+all,c[i].val)-b;
}
ll=1,rr=0;
int t=0;
for(int i=1;i<=qnum;i++)
{
while(ll>que[i].l)
ll--,add(now[ll]);
while(rr<que[i].r)
rr++,add(now[rr]);
while(ll<que[i].l)
del(now[ll]),ll++;
while(rr>que[i].r)
del(now[rr]),rr--;
while(t<que[i].t)
t++,change(c[t].pos,c[t].val);
while(t>que[i].t)
change(c[t].pos,c[t].pre),t--;
int mex=1;
while(cnt2[mex])
mex++;
ans[que[i].indx]=mex;
}
for(int i=1;i<=qnum;i++)
printf("%d\n",ans[i]);
return 0;
}