Metadata 原始碼解析 厲害了
Kafka原始碼深度解析-序列2 -Producer -Metadata的資料結構與讀取、更新策略
2016年09月22日 14:09:50 travi 閱讀數:9954
在上一篇,我們從使用方式和策略上,對訊息佇列做了一個巨集觀描述。從本篇開始,我們將深入到原始碼內部,仔細分析Kafka到底是如何實現一個分散式訊息佇列。我們的分析將從Producer端開始。
從Kafka 0.8.2開始,釋出了一套新的Java版的client api, KafkaProducer/KafkaConsumer,替代之前的scala版的api。本系列的分析將只針對這套Java版的api。
多執行緒非同步傳送模型
下圖是經過原始碼分析之後,整理出來的Producer端的架構圖:
在上一篇我們講過,Producer有同步傳送和非同步傳送2種策略。在以前的Kafka client api實現中,同步和非同步是分開實現的。而在0.9中,同步傳送其實是通過非同步傳送間接實現,其介面如下:
public class KafkaProducer<K, V> implements Producer<K, V> { ... public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) //非同步傳送介面 { ... } }
要實現同步傳送,只要在拿到返回的Future物件之後,直接呼叫get()就可以了。
基本思路
從上圖我們可以看出,非同步傳送的基本思路就是:send的時候,KafkaProducer把訊息放到本地的訊息佇列RecordAccumulator,然後一個後臺執行緒Sender不斷迴圈,把訊息發給Kafka叢集。
要實現這個,還得有一個前提條件:就是KafkaProducer/Sender都需要獲取叢集的配置資訊Metadata。所謂Metadata,也就是在上一篇所講的,Topic/Partion與broker的對映關係:每一個Topic的每一個Partion,得知道其對應的broker列表是什麼,其中leader是誰,follower是誰。
2個數據流
所以在上圖中,有2個數據流:
Metadata流(A1,A2,A3):Sender從叢集獲取資訊,然後更新Metadata; KafkaProducer先讀取Metadata,然後把訊息放入佇列。
訊息流(B1, B2, B3):這個很好理解,不再詳述。
本篇著重講述Metadata流,訊息流,將在後續詳細講述。
Metadata的執行緒安全性
從上圖可以看出,Metadata是多個producer執行緒讀,一個sender執行緒更新,因此它必須是執行緒安全的。
Kafka的官方文件上也有說明,KafkaProducer是執行緒安全的,可以在多執行緒中呼叫:
The producer is thread safe and sharing a single producer instance across threads will generally be faster than having multiple instances.
從下面程式碼也可以看出,它的所有public方法都是synchronized:
public final class Metadata {
。。。
public synchronized Cluster fetch() {
return this.cluster;
}
public synchronized long timeToNextUpdate(long nowMs) {
。。。
}
public synchronized int requestUpdate() {
。。。
}
。。。
}
Metadata的資料結構
下面程式碼列舉了Metadata的主要資料結構:一個Cluster物件 + 1堆狀態變數。前者記錄了叢集的配置資訊,後者用於控制Metadata的更新策略。
public final class Metadata {
...
private final long refreshBackoffMs; //更新失敗的情況下,下1次更新的補償時間(這個變數在程式碼中意義不是太大)
private final long metadataExpireMs; //關鍵值:每隔多久,更新一次。預設是600*1000,也就是10分種
private int version; //每更新成功1次,version遞增1。這個變數主要用於在while迴圈,wait的時候,作為迴圈判斷條件
private long lastRefreshMs; //上一次更新時間(也包含更新失敗的情況)
private long lastSuccessfulRefreshMs; //上一次成功更新的時間(如果每次都成功的話,則2者相等。否則,lastSuccessulRefreshMs < lastRefreshMs)
private Cluster cluster; //叢集配置資訊
private boolean needUpdate; //是否強制重新整理
、
...
}
public final class Cluster {
...
private final List<Node> nodes; //Node也就是Broker
private final Map<TopicPartition, PartitionInfo> partitionsByTopicPartition; //Topic/Partion和broker list的對映關係
private final Map<String, List<PartitionInfo>> partitionsByTopic;
private final Map<String, List<PartitionInfo>> availablePartitionsByTopic;
private final Map<Integer, List<PartitionInfo>> partitionsByNode;
private final Map<Integer, Node> nodesById;
}
public class PartitionInfo {
private final String topic;
private final int partition;
private final Node leader;
private final Node[] replicas;
private final Node[] inSyncReplicas;
}
producer讀取Metadata
下面是send函式的原始碼,可以看到,在send之前,會先讀取metadata。如果metadata讀不到,會一直阻塞在那,直到超時,丟擲TimeoutException
//KafkaProducer
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
try {
long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs); //拿不到topic的配置資訊,會一直阻塞在這,直到拋異常
... //拿到了,執行下面的send邏輯
} catch()
{}
}
//KafkaProducer
private long waitOnMetadata(String topic, long maxWaitMs) throws InterruptedException {
if (!this.metadata.containsTopic(topic))
this.metadata.add(topic);
if (metadata.fetch().partitionsForTopic(topic) != null)
return 0; //取到topic的配置資訊,直接返回
long begin = time.milliseconds();
long remainingWaitMs = maxWaitMs;
while (metadata.fetch().partitionsForTopic(topic) == null) { //取不到topic的配置資訊,一直死迴圈wait,直到超時,拋TimeoutException
log.trace("Requesting metadata update for topic {}.", topic);
int version = metadata.requestUpdate(); //把needUpdate置為true
sender.wakeup(); //喚起sender
metadata.awaitUpdate(version, remainingWaitMs); //metadata的關鍵函式
long elapsed = time.milliseconds() - begin;
if (elapsed >= maxWaitMs)
throw new TimeoutException("Failed to update metadata after " + maxWaitMs + " ms.");
if (metadata.fetch().unauthorizedTopics().contains(topic))
throw new TopicAuthorizationException(topic);
remainingWaitMs = maxWaitMs - elapsed;
}
return time.milliseconds() - begin;
}
//Metadata
public synchronized void awaitUpdate(final int lastVersion, final long maxWaitMs) throws InterruptedException {
if (maxWaitMs < 0) {
throw new IllegalArgumentException("Max time to wait for metadata updates should not be < 0 milli seconds");
}
long begin = System.currentTimeMillis();
long remainingWaitMs = maxWaitMs;
while (this.version <= lastVersion) { //當Sender成功更新meatadata之後,version加1。否則會迴圈,一直wait
if (remainingWaitMs != 0
wait(remainingWaitMs); //執行緒的wait機制,wait和synchronized的配合使用
long elapsed = System.currentTimeMillis() - begin;
if (elapsed >= maxWaitMs) //wait時間超出了最長等待時間
throw new TimeoutException("Failed to update metadata after " + maxWaitMs + " ms.");
remainingWaitMs = maxWaitMs - elapsed;
}
}
總結:從上面程式碼可以看出,producer wait metadata的時候,有2個條件:
(1) while (metadata.fetch().partitionsForTopic(topic) == null)
(2)while (this.version <= lastVersion)
有wait就會有notify,notify在Sender更新Metadata的時候發出。
Sender的建立
下面是KafkaProducer的建構函式,從程式碼可以看出,Sender就是KafkaProducer中建立的一個Thread.
private KafkaProducer(ProducerConfig config, Serializer<K> keySerializer, Serializer<V> valueSerializer) {
try {
...
this.metadata = new Metadata(retryBackoffMs, config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG)); //構造metadata
this.metadata.update(Cluster.bootstrap(addresses), time.milliseconds()); //往metadata中,填入初始的,配置的node列表
ChannelBuilder channelBuilder = ClientUtils.createChannelBuilder(config.values());
NetworkClient client = new NetworkClient(
new Selector(config.getLong(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG), this.metrics, time, "producer", metricTags, channelBuilder),
this.metadata,
clientId,
config.getInt(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION),
config.getLong(ProducerConfig.RECONNECT_BACKOFF_MS_CONFIG),
config.getInt(ProducerConfig.SEND_BUFFER_CONFIG),
config.getInt(ProducerConfig.RECEIVE_BUFFER_CONFIG),
this.sender = new Sender(client, //構造一個sender。sender本身實現的是Runnable介面
this.metadata,
this.accumulator,
config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG),
(short) parseAcks(config.getString(ProducerConfig.ACKS_CONFIG)),
config.getInt(ProducerConfig.RETRIES_CONFIG),
this.metrics,
new SystemTime(),
clientId,
this.requestTimeoutMs);
String ioThreadName = "kafka-producer-network-thread" + (clientId.length() > 0 ? " | " + clientId : "");
this.ioThread = new KafkaThread(ioThreadName, this.sender, true);
this.ioThread.start(); //一個執行緒,開啟sender
Sender poll()更新Metadata
public void run() {
// main loop, runs until close is called
while (running) {
try {
run(time.milliseconds());
} catch (Exception e) {
log.error("Uncaught error in kafka producer I/O thread: ", e);
}
}
。。。
}
public void run(long now) {
Cluster cluster = metadata.fetch();
。。。
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now); //遍歷訊息佇列中所有的訊息,找出對應的,已經ready的Node
if (result.unknownLeadersExist) //如果一個ready的node都沒有,請求更新metadata
this.metadata.requestUpdate();
。。。
//client的2個關鍵函式,一個傳送ClientRequest,一個接收ClientResponse。底層呼叫的是NIO的poll。關於nio, 後面會詳細介紹
for (ClientRequest request : requests)
client.send(request, now);
this.client.poll(pollTimeout, now);
}
//NetworkClient
public List<ClientResponse> poll(long timeout, long now) {
long metadataTimeout = metadataUpdater.maybeUpdate(now); //關鍵點:每次poll的時候判斷是否要更新metadata
try {
this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
} catch (IOException e) {
log.error("Unexpected error during I/O", e);
}
// process completed actions
long updatedNow = this.time.milliseconds();
List<ClientResponse> responses = new ArrayList<>();
handleCompletedSends(responses, updatedNow);
handleCompletedReceives(responses, updatedNow); //在返回的handler中,會處理metadata的更新
handleDisconnections(responses, updatedNow);
handleConnections();
handleTimedOutRequests(responses, updatedNow);
// invoke callbacks
for (ClientResponse response : responses) {
if (response.request().hasCallback()) {
try {
response.request().callback().onComplete(response);
} catch (Exception e) {
log.error("Uncaught error in request completion:", e);
}
}
}
return responses;
}
//DefaultMetadataUpdater
@Override
public long maybeUpdate(long now) {
// should we update our metadata?
long timeToNextMetadataUpdate = metadata.timeToNextUpdate(now);
long timeToNextReconnectAttempt = Math.max(this.lastNoNodeAvailableMs + metadata.refreshBackoff() - now, 0);
long waitForMetadataFetch = this.metadataFetchInProgress ? Integer.MAX_VALUE : 0;
// if there is no node available to connect, back off refreshing metadata
long metadataTimeout = Math.max(Math.max(timeToNextMetadataUpdate, timeToNextReconnectAttempt),
waitForMetadataFetch);
if (metadataTimeout == 0) {
// highly dependent on the behavior of leastLoadedNode.
Node node = leastLoadedNode(now); //找到負載最小的Node
maybeUpdate(now, node); //把更新Metadata的請求,發給這個Node
}
return metadataTimeout;
}
private void maybeUpdate(long now, Node node) {
if (node == null) {
log.debug("Give up sending metadata request since no node is available");
// mark the timestamp for no node available to connect
this.lastNoNodeAvailableMs = now;
return;
}
String nodeConnectionId = node.idString();
if (canSendRequest(nodeConnectionId)) {
Set<String> topics = metadata.needMetadataForAllTopics() ? new HashSet<String>() : metadata.topics();
this.metadataFetchInProgress = true;
ClientRequest metadataRequest = request(now, nodeConnectionId, topics); //關鍵點:傳送更新Metadata的Request
log.debug("Sending metadata request {} to node {}", metadataRequest, node.id());
doSend(metadataRequest, now); //這裡只是非同步傳送,返回的response在上面的handleCompletedReceives裡面處理
} else if (connectionStates.canConnect(nodeConnectionId, now)) {
log.debug("Initialize connection to node {} for sending metadata request", node.id());
initiateConnect(node, now);
} else { // connected, but can't send more OR connecting
this.lastNoNodeAvailableMs = now;
}
}
private void handleCompletedReceives(List<ClientResponse> responses, long now) {
for (NetworkReceive receive : this.selector.completedReceives()) {
String source = receive.source();
ClientRequest req = inFlightRequests.completeNext(source);
ResponseHeader header = ResponseHeader.parse(receive.payload());
// Always expect the response version id to be the same as the request version id
short apiKey = req.request().header().apiKey();
short apiVer = req.request().header().apiVersion();
Struct body = (Struct) ProtoUtils.responseSchema(apiKey, apiVer).read(receive.payload());
correlate(req.request().header(), header);
if (!metadataUpdater.maybeHandleCompletedReceive(req, now, body))
responses.add(new ClientResponse(req, now, false, body));
}
}
@Override
public boolean maybeHandleCompletedReceive(ClientRequest req, long now, Struct body) {
short apiKey = req.request().header().apiKey();
if (apiKey == ApiKeys.METADATA.id && req.isInitiatedByNetworkClient()) {
handleResponse(req.request().header(), body, now);
return true;
}
return false;
}
//關鍵函式
private void handleResponse(RequestHeader header, Struct body, long now) {
this.metadataFetchInProgress = false;
MetadataResponse response = new MetadataResponse(body);
Cluster cluster = response.cluster(); //從response中,拿到一個新的cluster物件
if (response.errors().size() > 0) {
log.warn("Error while fetching metadata with correlation id {} : {}", header.correlationId(), response.errors());
}
if (cluster.nodes().size() > 0) {
this.metadata.update(cluster, now); //更新metadata,用新的cluster覆蓋舊的cluster
} else {
log.trace("Ignoring empty metadata response with correlation id {}.", header.correlationId());
this.metadata.failedUpdate(now); //更新metadata失敗,做失敗處理邏輯
}
}
//更新成功,version+1, 同時更新其它欄位
public synchronized void update(Cluster cluster, long now) {
this.needUpdate = false;
this.lastRefreshMs = now;
this.lastSuccessfulRefreshMs = now;
this.version += 1;
for (Listener listener: listeners)
listener.onMetadataUpdate(cluster); //如果有人監聽了metadata的更新,通知他們
this.cluster = this.needMetadataForAllTopics ? getClusterForCurrentTopics(cluster) : cluster; //新的cluster覆蓋舊的cluster
notifyAll(); //通知所有的阻塞的producer執行緒
log.debug("Updated cluster metadata version {} to {}", this.version, this.cluster);
}
//更新失敗,只更新lastRefreshMs
public synchronized void failedUpdate(long now) {
this.lastRefreshMs = now;
}
從上面可以看出,Metadata的更新,是在while迴圈,每次呼叫client.poll()的時候更新的。
更新機制又有以下2種:
Metadata的2種更新機制
(1)週期性的更新: 每隔一段時間更新一次,這個通過 Metadata的lastRefreshMs, lastSuccessfulRefreshMs 這2個欄位來實現
對應的ProducerConfig配置項為:
metadata.max.age.ms //預設300000,即10分鐘1次
(2) 失效檢測,強制更新:檢查到metadata失效以後,呼叫metadata.requestUpdate()強制更新。 requestUpdate()函式裡面其實什麼都沒做,就是把needUpdate置成了false
每次poll的時候,都檢查這2種更新機制,達到了,就觸發更新。
那如何判定Metadata失效了呢?這個在程式碼中很分散,有很多地方,會判定Metadata失效。
Metadata失效檢測
條件1:initConnect的時候
private void initiateConnect(Node node, long now) {
String nodeConnectionId = node.idString();
try {
log.debug("Initiating connection to node {} at {}:{}.", node.id(), node.host(), node.port());
this.connectionStates.connecting(nodeConnectionId, now);
selector.connect(nodeConnectionId,
new InetSocketAddress(node.host(), node.port()),
this.socketSendBuffer,
this.socketReceiveBuffer);
} catch (IOException e) {
connectionStates.disconnected(nodeConnectionId, now);
metadataUpdater.requestUpdate(); //判定metadata失效
log.debug("Error connecting to node {} at {}:{}:", node.id(), node.host(), node.port(), e);
}
}
條件2:poll裡面IO的時候,連線斷掉了
private void handleDisconnections(List<ClientResponse> responses, long now) {
for (String node : this.selector.disconnected()) {
log.debug("Node {} disconnected.", node);
processDisconnection(responses, node, now);
}
if (this.selector.disconnected().size() > 0)
metadataUpdater.requestUpdate(); //判定metadata失效
}
條件3:有請求超時
private void handleTimedOutRequests(List<ClientResponse> responses, long now) {
List<String> nodeIds = this.inFlightRequests.getNodesWithTimedOutRequests(now, this.requestTimeoutMs);
for (String nodeId : nodeIds) {
this.selector.close(nodeId);
log.debug("Disconnecting from node {} due to request timeout.", nodeId);
processDisconnection(responses, nodeId, now);
}
if (nodeIds.size() > 0)
metadataUpdater.requestUpdate(); //判定metadata失效
}
條件4:發訊息的時候,有partition的leader沒找到
public void run(long now) {
Cluster cluster = metadata.fetch();
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
if (result.unknownLeadersExist)
this.metadata.requestUpdate();
條件5:返回的response和請求對不上的時候
private void handleProduceResponse(ClientResponse response, Map<TopicPartition, RecordBatch> batches, long now) {
int correlationId = response.request().request().header().correlationId();
if (response.wasDisconnected()) {
log.trace("Cancelled request {} due to node {} being disconnected", response, response.request()
.request()
.destination());
for (RecordBatch batch : batches.values())
completeBatch(batch, Errors.NETWORK_EXCEPTION, -1L, correlationId, now);
總之1句話:發生各式各樣的異常,資料不同步,都認為metadata可能出問題了,要求更新。
Metadata其他的更新策略
除了上面所述,Metadata的更新,還有以下幾個特點:
1.更新請求MetadataRequest是nio非同步傳送的,在poll的返回中,處理MetadataResponse的時候,才真正更新Metadata。
這裡有個關鍵點:Metadata的cluster物件,每次是整個覆蓋的,而不是區域性更新。所以cluster內部不用加鎖。
2.更新的時候,是從metadata儲存的所有Node,或者說Broker中,選負載最小的那個,也就是當前接收請求最少的那個。向其傳送MetadataRequest請求,獲取新的Cluster物件。