用程式碼來畫畫 —— Ray-Marching(光線步進) 多個立體圖形的繪製【GLSL】
阿新 • • 發佈:2018-11-08
參考自:
iq 的 https://www.shadertoy.com/view/Xds3zN
http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
http://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm
http://ogldev.atspace.co.uk/www/tutorial13/tutorial13.html
http://9bitscience.blogspot.kr/2013/07/raymarching-distance-fields_14.html
完整程式碼及演算法詳細註釋:
// Created by inigo quilez - iq/2013 // License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. // A list of usefull distance function to simple primitives, and an example on how to // do some interesting boolean operations, repetition and displacement. // // More info here: http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm // https://www.shadertoy.com/view/Xds3zN // 抗鋸齒開關 #define AA 2 // make this 1 is your machine is too slow //------------------------------------------------------------------ // --------SDF-------- // http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm float sdPlane(vec3 p) { return p.y; } float sdSphere(vec3 p, float s) { return length(p) - s; } float sdBox(vec3 p, vec3 b) { vec3 d = abs(p) - b; return min(max(d.x, max(d.y, d.z)), 0.0) + length(max(d, 0.0)); } float sdEllipsoid( in vec3 p, in vec3 r ) { return (length( p/r ) - 1.0) * min(min(r.x,r.y),r.z); } float udRoundBox(vec3 p, vec3 b, float r) { return length(max(abs(p) - b, 0.0)) - r; } float sdTorus(vec3 p, vec2 t) { return length(vec2(length(p.xz) - t.x, p.y)) - t.y; } float sdHexPrism(vec3 p, vec2 h) { vec3 q = abs(p); #if 0 return max(q.z-h.y,max((q.x*0.866025+q.y*0.5),q.y)-h.x); #else float d1 = q.z - h.y; float d2 = max((q.x * 0.866025 + q.y * 0.5), q.y) - h.x; return length(max(vec2(d1, d2), 0.0)) + min(max(d1, d2), 0.); #endif } float sdCapsule(vec3 p, vec3 a, vec3 b, float r) { vec3 pa = p - a, ba = b - a; float h = clamp(dot(pa, ba) / dot(ba, ba), 0.0, 1.0); return length(pa - ba * h) - r; } float sdTriPrism(vec3 p, vec2 h) { vec3 q = abs(p); #if 0 return max(q.z-h.y,max(q.x*0.866025+p.y*0.5,-p.y)-h.x*0.5); #else float d1 = q.z - h.y; float d2 = max(q.x * 0.866025 + p.y * 0.5, -p.y) - h.x * 0.5; return length(max(vec2(d1, d2), 0.0)) + min(max(d1, d2), 0.); #endif } float sdCylinder(vec3 p, vec2 h) { vec2 d = abs(vec2(length(p.xz), p.y)) - h; return min(max(d.x, d.y), 0.0) + length(max(d, 0.0)); } float sdCone( in vec3 p, in vec3 c ) { vec2 q = vec2( length(p.xz), p.y ); float d1 = -q.y-c.z; float d2 = max( dot(q,c.xy), q.y); return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.); } float sdConeSection( in vec3 p, in float h, in float r1, in float r2 ) { float d1 = -p.y - h; float q = p.y - h; float si = 0.5*(r1-r2)/h; float d2 = max( sqrt( dot(p.xz,p.xz)*(1.0-si*si)) + q*si - r2, q ); return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.); } float sdPryamid4(vec3 p, vec3 h) // h = { cos a, sin a, height } { // Tetrahedron = Octahedron - Cube float box = sdBox(p - vec3(0, -2.0 * h.z, 0), vec3(2.0 * h.z)); float d = 0.0; d = max(d, abs(dot(p, vec3(-h.x, h.y, 0)))); d = max(d, abs(dot(p, vec3(h.x, h.y, 0)))); d = max(d, abs(dot(p, vec3(0, h.y, h.x)))); d = max(d, abs(dot(p, vec3(0, h.y, -h.x)))); float octa = d - h.z; return max(-box, octa); // Subtraction } // --------SDF-------- // (p.x^2 + p.y^2)^(1/2) float length2(vec2 p) { return sqrt(p.x * p.x + p.y * p.y); } // (p.x^6 + p.y^6)^(1/6) float length6(vec2 p) { p = p * p * p; p = p * p; return pow(p.x + p.y, 1.0 / 6.0); } // (p.x^8 + p.y^8)^(1/8) float length8(vec2 p) { p = p * p; p = p * p; p = p * p; return pow(p.x + p.y, 1.0 / 8.0); } float sdTorus82(vec3 p, vec2 t) { vec2 q = vec2(length2(p.xz) - t.x, p.y); return length8(q) - t.y; } float sdTorus88(vec3 p, vec2 t) { vec2 q = vec2(length8(p.xz) - t.x, p.y); return length8(q) - t.y; } float sdCylinder6(vec3 p, vec2 h) { return max(length6(p.xz) - h.x, abs(p.y) - h.y); } //------------------------------------------------------------------ // Subtraction float opS(float d1, float d2) { return max(-d2, d1); } // Union vec2 opU(vec2 d1, vec2 d2) { return (d1.x < d2.x) ? d1 : d2; } // Repetition vec3 opRep(vec3 p, vec3 c) { return mod(p, c) - 0.5 * c; } // Twist vec3 opTwist(vec3 p) { float c = cos(10.0 * p.y + 10.0); float s = sin(10.0 * p.y + 10.0); mat2 m = mat2(c, -s, s, c); return vec3(m * p.xz, p.y); } //------------------------------------------------------------------ vec2 map( in vec3 pos ) { // res.x 是光線到表面的距離,res.y 影響的是物體材質 vec2 res = opU( vec2( sdPlane( pos), 1.0 ), vec2( sdSphere( pos-vec3( 0.0,0.25, 0.0), 0.25 ), 46.9 ) ); res = opU( res, vec2( sdBox( pos-vec3( 1.0,0.25, 0.0), vec3(0.25) ), 3.0 ) ); res = opU( res, vec2( udRoundBox( pos-vec3( 1.0,0.25, 1.0), vec3(0.15), 0.1 ), 41.0 ) ); res = opU( res, vec2( sdTorus( pos-vec3( 0.0,0.25, 1.0), vec2(0.20,0.05) ), 25.0 ) ); res = opU( res, vec2( sdCapsule( pos,vec3(-1.3,0.10,-0.1), vec3(-0.8,0.50,0.2), 0.1 ), 31.9 ) ); res = opU( res, vec2( sdTriPrism( pos-vec3(-1.0,0.25,-1.0), vec2(0.25,0.05) ),43.5 ) ); res = opU( res, vec2( sdCylinder( pos-vec3( 1.0,0.30,-1.0), vec2(0.1,0.2) ), 8.0 ) ); res = opU( res, vec2( sdCone( pos-vec3( 0.0,0.50,-1.0), vec3(0.8,0.6,0.3) ), 55.0 ) ); res = opU( res, vec2( sdTorus82( pos-vec3( 0.0,0.25, 2.0), vec2(0.20,0.05) ),50.0 ) ); res = opU( res, vec2( sdTorus88( pos-vec3(-1.0,0.25, 2.0), vec2(0.20,0.05) ),43.0 ) ); res = opU( res, vec2( sdCylinder6( pos-vec3( 1.0,0.30, 2.0), vec2(0.1,0.2) ), 12.0 ) ); res = opU( res, vec2( sdHexPrism( pos-vec3(-1.0,0.20, 1.0), vec2(0.25,0.05) ),17.0 ) ); res = opU( res, vec2( sdPryamid4( pos-vec3(-1.0,0.15,-2.0), vec3(0.8,0.6,0.25) ),37.0 ) ); res = opU( res, vec2( opS( udRoundBox( pos-vec3(-2.0,0.2, 1.0), vec3(0.15),0.05), sdSphere( pos-vec3(-2.0,0.2, 1.0), 0.25)), 13.0 ) ); res = opU( res, vec2( opS( sdTorus82( pos-vec3(-2.0,0.2, 0.0), vec2(0.20,0.1)), sdCylinder( opRep( vec3(atan(pos.x+2.0,pos.z)/6.2831, pos.y, 0.02+0.5*length(pos-vec3(-2.0,0.2, 0.0))), vec3(0.05,1.0,0.05)), vec2(0.02,0.6))), 51.0 ) ); res = opU( res, vec2( 0.5*sdSphere( pos-vec3(-2.0,0.25,-1.0), 0.2 ) + 0.03*sin(50.0*pos.x)*sin(50.0*pos.y)*sin(50.0*pos.z), 65.0 ) ); res = opU( res, vec2( 0.5*sdTorus( opTwist(pos-vec3(-2.0,0.25, 2.0)),vec2(0.20,0.05)), 46.7 ) ); res = opU( res, vec2( sdConeSection( pos-vec3( 0.0,0.35,-2.0), 0.15, 0.2, 0.1 ), 13.67 ) ); res = opU( res, vec2( sdEllipsoid( pos-vec3( 1.0,0.35,-2.0), vec3(0.15, 0.2, 0.05) ), 43.17 ) ); return res; } // 實際是 Ray-marching vec2 castRay( in vec3 ro, in vec3 rd ) { float tmin = 1.0; float tmax = 20.0; #if 1 // 加速 Raymarching // bounding volume float tp1 = (0.0-ro.y)/rd.y; if( tp1>0.0 ) tmax = min( tmax, tp1 ); float tp2 = (1.6-ro.y)/rd.y; if( tp2>0.0 ) { if( ro.y>1.6 ) tmin = max( tmin, tp2 ); else tmax = min( tmax, tp2 ); } #endif float t = tmin; float m = -1.0; for( int i=0; i<64; i++ ) { float precis = 0.0005*t; vec2 res = map( ro+rd*t ); if( res.x<precis || t>tmax ) break; t += res.x; m = res.y; // 唯一用到 res.y 的地方,影響材質的計算 } if( t>tmax ) m=-1.0; return vec2( t, m ); } // 柔化陰影 // http://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm float softshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax ) { float res = 1.0; float t = mint; for( int i=0; i<16; i++ ) { float h = map( ro + rd*t ).x; res = min( res, 8.0*h/t ); t += clamp( h, 0.02, 0.10 ); if( h<0.001 || t>tmax ) // 在[ mint, maxt)範圍內進行插值 break; } return clamp( res, 0.0, 1.0 ); } // 法線 vec3 calcNormal( in vec3 pos ) { vec2 e = vec2(1.0,-1.0)*0.5773*0.0005; return normalize( e.xyy*map( pos + e.xyy ).x + e.yyx*map( pos + e.yyx ).x + e.yxy*map( pos + e.yxy ).x + e.xxx*map( pos + e.xxx ).x ); /* vec3 eps = vec3( 0.0005, 0.0, 0.0 ); vec3 nor = vec3( map(pos+eps.xyy).x - map(pos-eps.xyy).x, map(pos+eps.yxy).x - map(pos-eps.yxy).x, map(pos+eps.yyx).x - map(pos-eps.yyx).x ); return normalize(nor); */ } // Ambient Occlusion: 環境光吸收/遮蔽 float calcAO( in vec3 pos, in vec3 nor ) { float occ = 0.0; float sca = 1.0; for( int i=0; i<5; i++ ) { float hr = 0.01 + 0.12*float(i)/4.0; vec3 aopos = nor * hr + pos; float dd = map( aopos ).x; occ += -(dd-hr)*sca; sca *= 0.95; } return clamp( 1.0 - 3.0*occ, 0.0, 1.0 ); } vec3 render( in vec3 ro, in vec3 rd ) { vec3 col = vec3(0.7, 0.9, 1.0) +rd.y*0.8; vec2 res = castRay(ro,rd); float t = res.x; float m = res.y; if( m>-0.5 ) { vec3 pos = ro + t*rd; // 步進的光線位置 vec3 nor = calcNormal( pos ); // 法線 vec3 ref = reflect( rd, nor ); // 反光 // material col = 0.45 + 0.35*sin( vec3(0.05,0.08,0.10)*(m-1.0) ); // 如果是地板的話 if( m<1.5 ) { // 格子地磚 float f = mod( floor(5.0*pos.z) + floor(5.0*pos.x), 2.0); col = 0.3 + 0.1*f*vec3(1.0); } // 光照模型的計算 float occ = calcAO( pos, nor ); vec3 lig = normalize( vec3(-0.4, 0.7, -0.6) ); float amb = clamp( 0.5+0.5*nor.y, 0.0, 1.0 ); float dif = clamp( dot( nor, lig ), 0.0, 1.0 ); float bac = clamp( dot( nor, normalize(vec3(-lig.x,0.0,-lig.z))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0); float dom = smoothstep( -0.1, 0.1, ref.y ); float fre = pow( clamp(1.0+dot(nor,rd),0.0,1.0), 2.0 ); float spe = pow(clamp( dot( ref, lig ), 0.0, 1.0 ),16.0); // 散射陰影 dif *= softshadow( pos, lig, 0.02, 2.5 ); // 反光陰影 dom *= softshadow( pos, ref, 0.02, 2.5 ); // 注意物體底座的陰影變化 // occ = 1.; vec3 lin = vec3(0.0); lin += 1.30*dif*vec3(1.00,0.80,0.55); lin += 2.00*spe*vec3(1.00,0.90,0.70)*dif; lin += 0.40*amb*vec3(0.40,0.60,1.00)*occ; lin += 0.50*dom*vec3(0.40,0.60,1.00)*occ; lin += 0.50*bac*vec3(0.25,0.25,0.25)*occ; lin += 0.25*fre*vec3(1.00,1.00,1.00)*occ; col = col*lin; col = mix( col, vec3(0.8,0.9,1.0), 1.0-exp( -0.0002*t*t*t ) ); } return vec3( clamp(col,0.0,1.0) ); } mat3 setCamera( in vec3 ro, in vec3 ta, float cr ) { vec3 cw = normalize(ta-ro); // look vec3 cp = vec3(sin(cr), cos(cr),0.0); // XY Space vec3 cu = normalize( cross(cw,cp) ); // right vec3 cv = normalize( cross(cu,cw) ); // up // right, // up, * world = camera // look // 注意: glsl 是按列儲存,所以可以直接右乘相機座標系的點,結果就是世界座標系下的點 return mat3( cu, cv, cw ); // right, up, look } uniform vec2 iMouse; uniform float iGlobalTime; const vec2 iResolution = vec2(512., 512.); #define fragColor gl_FragColor #define fragCoord gl_FragCoord void main() { vec2 mo = iMouse.xy / iResolution.xy; float time = 15.0 + iGlobalTime; vec3 tot = vec3(0.0); #if AA>1 // 開啟 AA for (int m = 0; m < AA; m++) { for (int n = 0; n < AA; n++) { // pixel coordinates vec2 o = vec2(float(m), float(n)) / float(AA) - 0.5; vec2 p = (-iResolution.xy + 2.0 * (fragCoord + o)) / iResolution.y; #else vec2 p = (-iResolution.xy + 2.0*fragCoord)/iResolution.y; #endif // camera vec3 ro = vec3(-0.5 + 3.5 * cos(0.1 * time + 6.0 * mo.x), 1.0 + 2.0 * mo.y, 0.5 + 4.0 * sin(0.1 * time + 6.0 * mo.x)); vec3 ta = vec3(-0.5, -0.4, 0.5); // camera-to-world transformation mat3 ca = setCamera(ro, ta, 0.0); // ray direction vec3 rd = ca * normalize(vec3(p.xy, 2.0)); // render vec3 col = render(ro, rd); // 針對電子螢幕的 gamma 矯正(否則顏色偏暗) col = pow(col, vec3(0.4545)); tot += col; #if AA>1 } } tot /= float(AA * AA); #endif fragColor = vec4(tot, 1.0); }