CF786B Legacy && 線段樹優化連邊
阿新 • • 發佈:2018-11-08
線段樹優化連邊
要求點 \(x\) 向區間 \([L, R]\) 連邊, 一次的複雜度上限為 \(O(n)\)
然後弄成線段樹的結構
先父子連邊邊權為 \(0\)
這樣連邊就只需要連父親就可以等效於連了區間內每個點
空間複雜度為線段樹大小, 一次區間連邊時間複雜度為 \(O(\log n)\)
這是連入邊, 連出邊的話反向建線段樹內邊即可
CF786B Legacy
預設情況下他不能用這把槍開啟任何傳送門。在網路上有q個售賣這些傳送槍的使用方案。每一次你想要實施這個方案時你都可以購買它,但是每次購買後只能使用一次。每個方案的購買次數都是無限的。
網路上一共有三種方案可供購買: 1.開啟一扇從星球v到星球u的傳送門; 2.開啟一扇從星球v到標號在[l,r]區間範圍內任何一個星球的傳送門。(即這扇傳送門可以從一個星球出發通往多個星球) 3.開啟一扇從標號在[l,r]區間範圍內任何一個星球到星球v的傳送門。(即這扇傳送門可以從多個星球出發到達同一個星球)
Rick並不知道Morty在哪兒,但是Unity將要通知他Morty的具體位置,並且他想要趕快找到通往所有星球的道路各一條並立刻出發。因此對於每一個星球(包括地球本身)他想要知道從地球到那個星球所需的最小錢數。
Solution
線段樹優化連邊即可
Code
#include<iostream> #include<cstdio> #include<queue> #include<cstring> #include<algorithm> #define LL long long #define REP(i, x, y) for(LL i = (x);i <= (y);i++) using namespace std; LL RD(){ LL out = 0,flag = 1;char c = getchar(); while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();} while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();} return flag * out; } const LL maxn = 100019 << 2, inf = 0xfffffffffffffff; LL head[maxn],nume = 1; struct Node{ LL v,dis,nxt; }E[maxn << 3]; void add(LL u,LL v,LL dis){ E[++nume].nxt = head[u]; E[nume].v = v; E[nume].dis = dis; head[u] = nume; } LL num, nr, s; #define lid (id << 1) #define rid (id << 1) | 1 LL tot; struct seg_tree{ LL l, r; LL Index[2]; }tree[maxn << 2]; void build(LL id, LL l, LL r){ tree[id].l = l, tree[id].r = r; if(l == r){ tree[id].Index[0] = tree[id].Index[1] = l; return ; } tree[id].Index[0] = ++tot;//入邊 tree[id].Index[1] = ++tot;//out LL mid = (l + r) >> 1; build(lid, l, mid), build(rid, mid + 1, r); add(tree[id].Index[0], tree[lid].Index[0], 0); add(tree[id].Index[0], tree[rid].Index[0], 0); add(tree[lid].Index[1], tree[id].Index[1], 0); add(tree[rid].Index[1], tree[id].Index[1], 0); } void IG(LL id, LL u, LL dis, LL l, LL r, LL o){//0 --> in, 1 --> out if(tree[id].l == l && tree[id].r == r){ if(o == 2)add(u, tree[id].Index[0], dis); else add(tree[id].Index[1], u, dis); return ; } LL mid = (tree[id].l + tree[id].r) >> 1; if(mid < l)IG(rid, u, dis, l, r, o); else if(mid >= r)IG(lid, u, dis, l, r, o); else IG(lid, u, dis, l, mid, o), IG(rid, u, dis, mid + 1, r, o); } void init(){ num = RD(), nr = RD(), s = RD(); tot = num; build(1, 1, num); REP(i, 1, nr){ LL cmd = RD(), u = RD(); if(cmd == 1){ LL v = RD(), dis = RD(); add(u, v, dis); } else{ LL l = RD(), r = RD(), dis = RD(); IG(1, u, dis, l, r, cmd); } } } LL d[maxn]; bool vis[maxn]; void Djs(LL s){ REP(i, 1, tot)d[i] = inf; priority_queue<pair<LL, LL> >Q; d[s] = 0; Q.push(make_pair(-d[s], s)); while(!Q.empty()){ LL u = Q.top().second;Q.pop(); if(vis[u])continue; vis[u] = 1; for(LL i = head[u];i;i = E[i].nxt){ LL v = E[i].v, dis = E[i].dis; if(d[u] + dis < d[v]){ d[v] = d[u] + dis; Q.push(make_pair(-d[v], v)); } } } } void solve(){ Djs(s); REP(i, 1, num){ if(d[i] == inf)printf("-1 "); else printf("%lld ", d[i]); } puts(""); } int main(){ init(); solve(); return 0; }