十大經典排序演算法詳細總結(含JAVA程式碼實現)
文章目錄
十大經典排序演算法詳細總結(含JAVA程式碼實現)
0、排序演算法說明
- 0.1 排序的定義
對一序列物件根據某個關鍵字進行排序。 - 0.2 術語說明
- 穩定 :如果a原本在b前面,而a=b,排序之後a仍然在b的前面;
- 不穩定 :如果a原本在b的前面,而a=b,排序之後a可能會出現在b的後面;
- 內排序 :所有排序操作都在記憶體中完成;
- 外排序 :由於資料太大,因此把資料放在磁碟中,而排序通過磁碟和記憶體的資料傳輸才能進行;
- 時間複雜度 : 一個演算法執行所耗費的時間。
- 空間複雜度 :執行完一個程式所需記憶體的大小。
- 0.3 演算法總結
圖片名詞解釋:- n: 資料規模
- k: “桶”的個數
- In-place: 佔用常數記憶體,不佔用額外記憶體
- Out-place: 佔用額外記憶體
- 0.5 演算法分類
- 0.6 比較和非比較的區別
常見的快速排序、歸併排序、堆排序、氣泡排序 等屬於比較排序 。在排序的最終結果裡,元素之間的次序依賴於它們之間的比較。每個數都必須和其他數進行比較,才能確定自己的位置
在氣泡排序之類的排序中,問題規模為n,又因為需要比較n次,所以平均時間複雜度為O(n²)。在歸併排序、快速排序之類的排序中,問題規模通過分治法消減為logN次,所以時間複雜度平均O(nlogn)。
比較排序的優勢是,適用於各種規模的資料,也不在乎資料的分佈,都能進行排序。可以說,比較排序適用於一切需要排序的情況。
計數排序、基數排序、桶排序則屬於非比較排序 。非比較排序是通過確定每個元素之前,應該有多少個元素來排序。針對陣列arr,計算arr[i]之前有多少個元素,則唯一確定了arr[i]在排序後陣列中的位置 。
非比較排序只要確定每個元素之前的已有的元素個數即可,所有一次遍歷即可解決。演算法時間複雜度O(n)。
非比較排序時間複雜度底,但由於非比較排序需要佔用空間來確定唯一位置。所以對資料規模和資料分佈有一定的要求。
1、氣泡排序(Bubble Sort)
氣泡排序 是一種簡單的排序演算法。它重複地走訪過要排序的數列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。走訪數列的工作是重複地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越小的元素會經由交換慢慢“浮”到數列的頂端。
- 1.1 演算法描述
- 步驟1: 比較相鄰的元素。如果第一個比第二個大,就交換它們兩個;
- 步驟2: 對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對,這樣在最後的元素應該會是最大的數;
- 步驟3: 針對所有的元素重複以上的步驟,除了最後一個;
- 步驟4: 重複步驟1~3,直到排序完成。
- 步驟1: 比較相鄰的元素。如果第一個比第二個大,就交換它們兩個;
- 1.2 動圖演示
1.3 程式碼實現
/**
* 氣泡排序
*
* @param array
* @return
*/
public static int[] bubbleSort(int[] array) {
if (array.length == 0)
return array;
for (int i = 0; i < array.length; i++)
for (int j = 0; j < array.length - 1 - i; j++)
if (array[j + 1] < array[j]) {
int temp = array[j + 1];
array[j + 1] = array[j];
array[j] = temp;
}
return array;
}
- 1.4 演算法分析
- 最佳情況:T(n) = O(n)
- 最差情況:T(n) = O(n2)
- 平均情況:T(n) = O(n2)
2、選擇排序(Selection Sort)
選擇排序 是表現最穩定的排序演算法之一 ,因為無論什麼資料進去都是O(n2)的時間複雜度 ,所以用到它的時候,資料規模越小越好。唯一的好處可能就是不佔用額外的記憶體空間了吧。理論上講,選擇排序可能也是平時排序一般人想到的最多的排序方法了吧。
選擇排序(Selection-sort) 是一種簡單直觀的排序演算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。
- 2.1 演算法描述
n個記錄的直接選擇排序可經過n-1趟直接選擇排序得到有序結果。具體演算法描述如下:- 步驟1:初始狀態:無序區為R[1…n],有序區為空;
- 步驟2:第i趟排序(i=1,2,3…n-1)開始時,當前有序區和無序區分別為R[1…i-1]和R(i…n)。該趟排序從當前無序區中-選出關鍵字最小的記錄 R[k],將它與無序區的第1個記錄R交換,使R[1…i]和R[i+1…n)分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區;
- 步驟3:n-1趟結束,陣列有序化了。
- 2.2 動圖演示
- 2.3 程式碼實現
/**
* 選擇排序
* @param array
* @return
*/
public static int[] selectionSort(int[] array) {
if (array.length == 0)
return array;
for (int i = 0; i < array.length; i++) {
int minIndex = i;
for (int j = i; j < array.length; j++) {
if (array[j] < array[minIndex]) //找到最小的數
minIndex = j; //將最小數的索引儲存
}
int temp = array[minIndex];
array[minIndex] = array[i];
array[i] = temp;
}
return array;
}
- 2.4 演算法分析
- 最佳情況:T(n) = O(n2)
- 最差情況:T(n) = O(n2)
- 平均情況:T(n) = O(n2)
3、插入排序(Insertion Sort)
插入排序(Insertion-Sort) 的演算法描述是一種簡單直觀的排序演算法。它的工作原理是通過構建有序序列,對於未排序資料,在已排序序列中從後向前掃描,找到相應位置並插入。插入排序在實現上,通常採用in-place排序(即只需用到O(1)的額外空間的排序),因而在從後向前掃描過程中,需要反覆把已排序元素逐步向後挪位,為最新元素提供插入空間。
- 3.1 演算法描述
一般來說,插入排序都採用in-place在陣列上實現。具體演算法描述如下:- 步驟1: 從第一個元素開始,該元素可以認為已經被排序;
- 步驟2: 取出下一個元素,在已經排序的元素序列中從後向前掃描;
- 步驟3: 如果該元素(已排序)大於新元素,將該元素移到下一位置;
- 步驟4: 重複步驟3,直到找到已排序的元素小於或者等於新元素的位置;
- 步驟5: 將新元素插入到該位置後;
- 步驟6: 重複步驟2~5。
- 3.2 動圖演示
- 3.3 程式碼實現
/**
* 插入排序
* @param array
* @return
*/
public static int[] insertionSort(int[] array) {
if (array.length == 0)
return array;
int current;
for (int i = 0; i < array.length - 1; i++) {
current = array[i + 1];
int preIndex = i;
while (preIndex >= 0 && current < array[preIndex]) {
array[preIndex + 1] = array[preIndex];
preIndex--;
}
array[preIndex + 1] = current;
}
return array;
}
- 3.4 演算法分析
- 最佳情況:T(n) = O(n)
- 最壞情況:T(n) = O(n2)
- 平均情況:T(n) = O(n2)
4、希爾排序(Shell Sort)
希爾排序是希爾(Donald Shell) 於1959年提出的一種排序演算法。希爾排序也是一種插入排序,它是簡單插入排序經過改進之後的一個更高效的版本,也稱為縮小增量排序,同時該演算法是衝破O(n2)的第一批演算法之一。它與插入排序的不同之處在於,它會優先比較距離較遠的元素。希爾排序又叫縮小增量排序。
希爾排序是把記錄按下表的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個檔案恰被分成一組,演算法便終止。
- 4.1 演算法描述
我們來看下希爾排序的基本步驟,在此我們選擇增量gap=length/2,縮小增量繼續以gap = gap/2的方式,這種增量選擇我們可以用一個序列來表示,{n/2,(n/2)/2…1},稱為增量序列。希爾排序的增量序列的選擇與證明是個數學難題,我們選擇的這個增量序列是比較常用的,也是希爾建議的增量,稱為希爾增量,但其實這個增量序列不是最優的。此處我們做示例使用希爾增量。
先將整個待排序的記錄序列分割成為若干子序列分別進行直接插入排序,具體演算法描述:- 步驟1:選擇一個增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- 步驟2:按增量序列個數k,對序列進行k 趟排序;
- 步驟3:每趟排序,根據對應的增量ti,將待排序列分割成若干長度為m 的子序列,分別對各子表進行直接插入排序。僅增量因子為1 時,整個序列作為一個表來處理,表長度即為整個序列的長度。
- 4.2 過程演示
- 4.3 程式碼實現
/**
* 希爾排序
*
* @param array
* @return
*/
public static int[] ShellSort(int[] array) {
int len = array.length;
int temp, gap = len / 2;
while (gap > 0) {
for (int i = gap; i < len; i++) {
temp = array[i];
int preIndex = i - gap;
while (preIndex >= 0 && array[preIndex] > temp) {
array[preIndex + gap] = array[preIndex];
preIndex -= gap;
}
array[preIndex + gap] = temp;
}
gap /= 2;
}
return array;
}
- 4.4 演算法分析
- 最佳情況:T(n) = O(nlog2 n)
- 最壞情況:T(n) = O(nlog2 n)
- 平均情況:T(n) =O(nlog2n)
5、歸併排序(Merge Sort)
和選擇排序一樣,歸併排序的效能不受輸入資料的影響,但表現比選擇排序好的多,因為始終都是O(n log n)的時間複雜度。代價是需要額外的記憶體空間。
歸併排序 是建立在歸併操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。歸併排序是一種穩定的排序方法。將已有序的子序列合併,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合併成一個有序表,稱為2-路歸併。
- 5.1 演算法描述
- 步驟1:把長度為n的輸入序列分成兩個長度為n/2的子序列;
- 步驟2:對這兩個子序列分別採用歸併排序;
- 步驟3:將兩個排序好的子序列合併成一個最終的排序序列。
- 5.2 動圖演示
- 5.3 程式碼實現
/**
* 歸併排序
*
* @param array
* @return
*/
public static int[] MergeSort(int[] array) {
if (array.length < 2) return array;
int mid = array.length / 2;
int[] left = Arrays.copyOfRange(array, 0, mid);
int[] right = Arrays.copyOfRange(array, mid, array.length);
return merge(MergeSort(left), MergeSort(right));
}
/**
* 歸併排序——將兩段排序好的陣列結合成一個排序陣列
*
* @param left
* @param right
* @return
*/
public static int[] merge(int[] left, int[] right) {
int[] result = new int[left.length + right.length];
for (int index = 0, i = 0, j = 0; index < result.length; index++) {
if (i >= left.length)
result[index] = right[j++];
else if (j >= right.length)
result[index] = left[i++];
else if (left[i] > right[j])
result[index] = right[j++];
else
result[index] = left[i++];
}
return result;
}
- 5.4 演算法分析
- 最佳情況:T(n) = O(n)
- 最差情況:T(n) = O(nlogn)
- 平均情況:T(n) = O(nlogn)
6、快速排序(Quick Sort)
快速排序 的基本思想:通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。
- 6.1 演算法描述
快速排序使用分治法來把一個串(list)分為兩個子串(sub-lists)。具體演算法描述如下:- 步驟1:從數列中挑出一個元素,稱為 “基準”(pivot );
- 步驟2:重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分割槽退出之後,該基準就處於數列的中間位置。這個稱為分割槽(partition)操作;
- 步驟3:遞迴地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
- 6.2 動圖演示
- 6.3 程式碼實現
/**
* 快速排序方法
* @param array
* @param start
* @param end
* @return
*/
public static int[] QuickSort(int[] array, int start, int end) {
if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
int smallIndex = partition(array, start, end);
if (smallIndex > start)
QuickSort(array, start, smallIndex - 1);
if (smallIndex < end)
QuickSort(array, smallIndex + 1, end);
return array;
}
/**
* 快速排序演算法——partition
* @param array
* @param start
* @param end
* @return
*/
public static int partition(int[] array, int start, int end) {
int pivot = (int) (start + Math.random() * (end - start + 1));
int smallIndex = start - 1;
swap(array, pivot, end);
for (int i = start; i <= end; i++)
if (array[i] <= array[end]) {
smallIndex++;
if (i > smallIndex)
swap(array, i, smallIndex);
}
return smallIndex;
}
/**
* 交換陣列內兩個元素
* @param array
* @param i
* @param j
*/
public static void swap(int[] array, int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
- 6.4 演算法分析
- 最佳情況:T(n) = O(nlogn)
- 最差情況:T(n) = O(n2)
- 平均情況:T(n) = O(nlogn)
7、堆排序(Heap Sort)
堆排序(Heapsort) 是指利用堆這種資料結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。
- 7.1 演算法描述
- 步驟1:將初始待排序關鍵字序列(R1,R2….Rn)構建成大頂堆,此堆為初始的無序區;
- 步驟2:將堆頂元素R[1]與最後一個元素R[n]交換,此時得到新的無序區(R1,R2,……Rn-1)和新的有序區(Rn),且滿足R[1,2…n-1]<=R[n];
- 步驟3:由於交換後新的堆頂R[1]可能違反堆的性質,因此需要對當前無序區(R1,R2,……Rn-1)調整為新堆,然後再次將R[1]與無序區最後一個元素交換,得到新的無序區(R1,R2….Rn-2)和新的有序區(Rn-1,Rn)。不斷重複此過程直到有序區的元素個數為n-1,則整個排序過程完成。
- 7.2 動圖演示
- 7.3 程式碼實現
注意:這裡用到了完全二叉樹的部分性質:詳情見資料結構二叉樹知識點
//宣告全域性變數,用於記錄陣列array的長度;
static int len;
/**
* 堆排序演算法
*
* @param array
* @return
*/
public static int[] HeapSort(int[] array) {
len = array.length;
if (len < 1) return array;
//1.構建一個最大堆
buildMaxHeap(array);
//2.迴圈將堆首位(最大值)與末位交換,然後在重新調整最大堆
while (len > 0) {
swap(array, 0, len - 1);
len--;
adjustHeap(array, 0);
}
return array;
}
/**
* 建立最大堆
*
* @param array
*/
public static void buildMaxHeap(int[] array) {
//從最後一個非葉子節點開始向上構造最大堆
//for迴圈這樣寫會更好一點:i的左子樹和右子樹分別2i+1和2(i+1)
for (int i = (len/2- 1); i >= 0; i--) {
adjustHeap(array, i);
}
}
/**
* 調整使之成為最大堆
*
* @param array
* @param i
*/
public static void adjustHeap(int[] array, int i) {
int maxIndex = i;
//如果有左子樹,且左子樹大於父節點,則將最大指標指向左子樹
if (i * 2 < len && array[i * 2] > array[maxIndex])
maxIndex = i * 2;
//如果有右子樹,且右子樹大於父節點,則將最大指標指向右子樹
if (i * 2 + 1 < len && array[i * 2 + 1] > array[maxIndex])
maxIndex = i * 2 + 1;
//如果父節點不是最大值,則將父節點與最大值交換,並且遞迴調整與父節點交換的位置。
if (maxIndex != i) {
swap(array, maxIndex, i);
adjustHeap(array, maxIndex);
}
}
- 7.4 演算法分析
- 最佳情況:T(n) = O(nlogn)
- 最差情況:T(n) = O(nlogn)
- 平均情況:T(n) = O(nlogn)
8、計數排序(Counting Sort)
計數排序 的核心在於將輸入的資料值轉化為鍵儲存在額外開闢的陣列空間中。 作為一種線性時間複雜度的排序,計數排序要求輸入的資料必須是有確定範圍的整數。
計數排序(Counting sort) 是一種穩定的排序演算法。計數排序使用一個額外的陣列C,其中第i個元素是待排序陣列A中值等於i的元素的個數。然後根據陣列C來將A中的元素排到正確的位置。它只能對整數進行排序。
- 8.1 演算法描述
- 步驟1:找出待排序的陣列中最大和最小的元素;
- 步驟2:統計陣列中每個值為i的元素出現的次數,存入陣列C的第i項;
- 步驟3:對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加);
- 步驟4:反向填充目標陣列:將每個元素i放在新陣列的第C(i)項,每放一個元素就將C(i)減去1。
- 8.2 動圖演示
- 8.3 程式碼實現
/**
* 計數排序
*
* @param array
* @return
*/
public static int[] CountingSort(int[] array) {
if (array.length == 0) return array;
int bias, min = array[0], max = array[0];
for (int i = 1; i < array.length; i++) {
if (array[i] > max)
max = array[i];
if (array[i] < min)
min = array[i];
}
bias = 0 - min;
int[] bucket = new int[max - min + 1];
Arrays.fill(bucket, 0);
for (int i = 0; i < array.length; i++) {
bucket[array[i] + bias]++;
}
int index = 0, i = 0;
while (index < array.length) {
if (bucket[i] != 0) {
array[index] = i - bias;
bucket[i]--;
index++;
} else
i++;
}
return array;
}
-
8.4 演算法分析
當輸入的元素是n 個0到k之間的整數時,它的執行時間是 O(n + k)。計數排序不是比較排序,排序的速度快於任何比較排序演算法。由於用來計數的陣列C的長度取決於待排序陣列中資料的範圍(等於待排序陣列的最大值與最小值的差加上1),這使得計數排序對於資料範圍很大的陣列,需要大量時間和記憶體。- 最佳情況:T(n) = O(n+k)
- 最差情況:T(n) = O(n+k)
- 平均情況:T(n) = O(n+k)
9、桶排序(Bucket Sort)
桶排序 是計數排序的升級版。它利用了函式的對映關係,高效與否的關鍵就在於這個對映函式的確定。
桶排序 (Bucket sort)的工作的原理:
假設輸入資料服從均勻分佈,將資料分到有限數量的桶裡,每個桶再分別排序(有可能再使用別的排序演算法或是以遞迴方式繼續使用桶排序進行排
- 9.1 演算法描述
- 步驟1:人為設定一個BucketSize,作為每個桶所能放置多少個不同數值(例如當BucketSize==5時,該桶可以存放{1,2,3,4,5}這幾種數字,但是容量不限,即可以存放100個3);
- 步驟2:遍歷輸入資料,並且把資料一個一個放到對應的桶裡去;
- 步驟3:對每個不是空的桶進行排序,可以使用其它排序方法,也可以遞迴使用桶排序;
- 步驟4:從不是空的桶裡把排好序的資料拼接起來。
注意,如果遞迴使用桶排序為各個桶排序,則當桶數量為1時要手動減小BucketSize增加下一迴圈桶的數量,否則會陷入死迴圈,導致記憶體溢位。
- 9.2 圖片演示
- 9.3 程式碼實現
/**
* 桶排序
*
* @param array
* @param bucketSize
* @return
*/
public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) {
if (array == null || array.size() < 2)
return array;
int max = array.get(0), min = array.get(0);
// 找到最大值最小值
for (int i = 0; i < array.size(); i++) {
if (array.get(i) > max)
max = array.get(i);
if (array.get(i) < min)
min = array.get(i);
}
int bucketCount = (max - min) / bucketSize + 1;
ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount);
ArrayList<Integer> resultArr = new ArrayList<>();
for (int i = 0; i < bucketCount; i++) {
bucketArr.add(new ArrayList<Integer>());
}
for (int i = 0; i < array.size(); i++) {
bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i));
}
for (int i = 0; i < bucketCount; i++) {
if (bucketSize == 1) { // 如果帶排序陣列中有重複數字時
for (int j = 0; j < bucketArr.get(i).size(); j++)
resultArr.add(bucketArr.get(i).get(j));
} else {
if (bucketCount == 1)
bucketSize--;
ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize);
for (int j = 0; j < temp.size(); j++)
resultArr.add(temp.get(j));
}
}
return resultArr;
}
-
9.4 演算法分析
桶排序最好情況下使用線性時間O(n),桶排序的時間複雜度,取決與對各個桶之間資料進行排序的時間複雜度,因為其它部分的時間複雜度都為O(n)。很顯然,桶劃分的越小,各個桶之間的資料越少,排序所用的時間也會越少。但相應的空間消耗就會增大。- 最佳情況:T(n) = O(n+k)
- 最差情況:T(n) = O(n+k)
- 平均情況:T(n) = O(n2)
10、基數排序(Radix Sort)
基數排序也是非比較的排序演算法,對每一位進行排序,從最低位開始排序,複雜度為O(kn),為陣列長度,k為陣列中的數的最大的位數;
基數排序是按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先順序順序的,先按低優先順序排序,再按高優先順序排序。最後的次序就是高優先順序高的在前,高優先順序相同的低優先順序高的在前。基數排序基於分別排序,分別收集,所以是穩定的。
- 10.1 演算法描述
- 步驟1:取得陣列中的最大數,並取得位數;
- 步驟2:arr為原始陣列,從最低位開始取每個位組成radix陣列;
- 步驟3:對radix進行計數排序(利用計數排序適用於小範圍數的特點);
- 10.2 動圖演示
- 10.3 程式碼實現
/**
* 基數排序
* @param array
* @return
*/
public static int[] RadixSort(int[] array) {
if (array == null || array.length < 2)
return array;
// 1.先算出最大數的位數;
int max = array[0];
for (int i = 1; i < array.length; i++) {
max = Math.max(max, array[i]);
}
int maxDigit = 0;
while (max != 0) {
max /= 10;
maxDigit++;
}
int mod = 10, div = 1;
ArrayList<ArrayList<Integer>> bucketList = new ArrayList<ArrayList<Integer>>();
for (int i = 0; i < 10; i++)
bucketList.add(new ArrayList<Integer>());
for (int i = 0; i < maxDigit; i++, mod *= 10, div *= 10) {
for (int j = 0; j < array.length; j++) {
int num = (array[j] % mod) / div;
bucketList.get(num).add(array[j]);
}
int index = 0;
for (int j = 0; j < bucketList.size(); j++) {
for (int k = 0; k < bucketList.get(j).size(); k++)
array[index++] = bucketList.get(j).get(k);
bucketList.get(j).clear();
}
}
return array;
}
-
10.4 演算法分析
- 最佳情況:T(n) = O(n * k)
- 最差情況:T(n) = O(n * k)
- 平均情況:T(n) = O(n * k)
-
10.5 基數排序有兩種方法:
- MSD 從高位開始進行排序
- LSD 從低位開始進行排序
-
基數排序 vs 計數排序 vs 桶排序
這三種排序演算法都利用了桶的概念,但對桶的使用方法上有明顯差異:- 基數排序: 根據鍵值的每位數字來分配桶
- 計數排序: 每個桶只儲存單一鍵值
- 桶排序: 每個桶儲存一定範圍的數值