記錄caffe下配置bottom up attention (py-faster-rcnn)環境配置遇到的坑
bottom up attention為py-faster-rcnn在 Visual Genome 資料集預訓練的模型,官方py-faster-rcnn在COCO資料集預訓練下僅識別80個class,bottom up attention可識別1600個object class以及400個屬性class
論文地址:http://www.panderson.me/up-down-attention/
一、電腦配置
準備工作:
Ubuntu16.04系統
GTX1070顯示卡
cuda8.0+cuDNN5.1
cuda8.0以及相對應cuDNN5.1的安裝不再贅述,參考:https://www.cnblogs.com/xujianqing/p/6142963.html
二、caffe編譯
1.git clone
注意不要下載官網的caffe版本(py-faster-rcnn是舊版的caffe,官網是新版),直接git clone作者github
git clone https://github.com/peteanderson80/bottom-up-attention
否則會遇到版本不一致的問題,無法編譯!!!
2.Build the Cython modules
(cython 通過混合C和python 的語法,可以提高python程式碼的執行速度)
在bottom-up-attention目錄下開啟終端
cd $REPO_ROOT/lib
make
3.Build Caffe
1)修改Makefile.config
$ cd caffe //到caffe的根目錄下
$ mv Makefile.config.example Makefile.config
//修改Makefile檔案
//用vi編輯器開啟Makefile.config
修改Makefile.config是重點!!!
下面貼出我的Makefile.config(使用GPU)
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7\
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
#PYTHON_LIBRARIES := boost_python36 python3.6m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
LINKFLAGS := -Wl,-rpath,$(HOME)/anaconda2/lib
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
USE_NCCL := 1
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
2)編譯caffe
//接著進行caffe的編譯,這個過程需要一定的時間
$ cd caffe
$ make pycaffe
$ make all
$ make test
$ make runtest
注意:編譯時要把當前目錄定位到caffe根目錄下,否則會報錯
在編譯時會出現一個問題!!!(我們安裝的是舊版caffe,舊版的caffe和cudnn5/6是不相容的,要修改所以cudnn開頭的檔案)
按照以下要求:
在官網下載新版caffe檔案
用最新caffe原始碼的以下檔案替換掉faster rcnn 的對應檔案((不要重新命名,直接刪除舊版檔案))
include/caffe/layers/cudnn_relu_layer.hpp, src/caffe/layers/cudnn_relu_layer.cpp, src/caffe/layers/cudnn_relu_layer.cu
include/caffe/layers/cudnn_sigmoid_layer.hpp, src/caffe/layers/cudnn_sigmoid_layer.cpp, src/caffe/layers/cudnn_sigmoid_layer.cu
include/caffe/layers/cudnn_tanh_layer.hpp, src/caffe/layers/cudnn_tanh_layer.cpp, src/caffe/layers/cudnn_tanh_layer.cu
載入完這些命令之後沒有報錯就應該是編譯完成。
4.Build pycaffe
cd $REPO_ROOT/caffe
make -j8 && make pycaffe
三、嘗試執行Demo
下載 pretrained model, 放在data\faster_rcnn_models下
Run tools/demo.ipynb
to show object and attribute detections on demo images.(確保安裝了cv包)