pytorch:實現簡單的GAN(MNIST資料集)
阿新 • • 發佈:2018-11-09
# -*- coding: utf-8 -*- """ Created on Sat Oct 13 10:22:45 2018 @author: www """ import torch from torch import nn from torch.autograd import Variable import torchvision.transforms as tfs from torch.utils.data import DataLoader, sampler from torchvision.datasets import MNIST import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec plt.rcParams['figure.figsize'] = (10.0, 8.0) # 設定畫圖的尺寸 plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' def show_images(images): # 定義畫圖工具 images = np.reshape(images, [images.shape[0], -1]) sqrtn = int(np.ceil(np.sqrt(images.shape[0]))) sqrtimg = int(np.ceil(np.sqrt(images.shape[1]))) fig = plt.figure(figsize=(sqrtn, sqrtn)) gs = gridspec.GridSpec(sqrtn, sqrtn) gs.update(wspace=0.05, hspace=0.05) for i, img in enumerate(images): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(img.reshape([sqrtimg,sqrtimg])) return def preprocess_img(x): x = tfs.ToTensor()(x) return (x - 0.5) / 0.5 def deprocess_img(x): return (x + 1.0) / 2.0 class ChunkSampler(sampler.Sampler): # 定義一個取樣的函式 """Samples elements sequentially from some offset. Arguments: num_samples: # of desired datapoints start: offset where we should start selecting from """ def __init__(self, num_samples, start=0): self.num_samples = num_samples self.start = start def __iter__(self): return iter(range(self.start, self.start + self.num_samples)) def __len__(self): return self.num_samples NUM_TRAIN = 50000 NUM_VAL = 5000 NOISE_DIM = 96 batch_size = 128 train_set = MNIST('E:/data', train=True, transform=preprocess_img) train_data = DataLoader(train_set, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0)) val_set = MNIST('E:/data', train=True, transform=preprocess_img) val_data = DataLoader(val_set, batch_size=batch_size, sampler=ChunkSampler(NUM_VAL, NUM_TRAIN)) imgs = deprocess_img(train_data.__iter__().next()[0].view(batch_size, 784)).numpy().squeeze() # 視覺化圖片效果 show_images(imgs) #判別網路 def discriminator(): net = nn.Sequential( nn.Linear(784, 256), nn.LeakyReLU(0.2), nn.Linear(256, 256), nn.LeakyReLU(0.2), nn.Linear(256, 1) ) return net #生成網路 def generator(noise_dim=NOISE_DIM): net = nn.Sequential( nn.Linear(noise_dim, 1024), nn.ReLU(True), nn.Linear(1024, 1024), nn.ReLU(True), nn.Linear(1024, 784), nn.Tanh() ) return net #判別器的 loss 就是將真實資料的得分判斷為 1,假的資料的得分判斷為 0,而生成器的 loss 就是將假的資料判斷為 1 bce_loss = nn.BCEWithLogitsLoss()#交叉熵損失函式 def discriminator_loss(logits_real, logits_fake): # 判別器的 loss size = logits_real.shape[0] true_labels = Variable(torch.ones(size, 1)).float() false_labels = Variable(torch.zeros(size, 1)).float() loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels) return loss def generator_loss(logits_fake): # 生成器的 loss size = logits_fake.shape[0] true_labels = Variable(torch.ones(size, 1)).float() loss = bce_loss(logits_fake, true_labels) return loss # 使用 adam 來進行訓練,學習率是 3e-4, beta1 是 0.5, beta2 是 0.999 def get_optimizer(net): optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, betas=(0.5, 0.999)) return optimizer def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every=250, noise_size=96, num_epochs=10): iter_count = 0 for epoch in range(num_epochs): for x, _ in train_data: bs = x.shape[0] # 判別網路 real_data = Variable(x).view(bs, -1) # 真實資料 logits_real = D_net(real_data) # 判別網路得分 sample_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5 # -1 ~ 1 的均勻分佈 g_fake_seed = Variable(sample_noise) fake_images = G_net(g_fake_seed) # 生成的假的資料 logits_fake = D_net(fake_images) # 判別網路得分 d_total_error = discriminator_loss(logits_real, logits_fake) # 判別器的 loss D_optimizer.zero_grad() d_total_error.backward() D_optimizer.step() # 優化判別網路 # 生成網路 g_fake_seed = Variable(sample_noise) fake_images = G_net(g_fake_seed) # 生成的假的資料 gen_logits_fake = D_net(fake_images) g_error = generator_loss(gen_logits_fake) # 生成網路的 loss G_optimizer.zero_grad() g_error.backward() G_optimizer.step() # 優化生成網路 if (iter_count % show_every == 0): print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count, d_total_error.item(), g_error.item())) imgs_numpy = deprocess_img(fake_images.data.cpu().numpy()) show_images(imgs_numpy[0:16]) plt.show() print() iter_count += 1 D = discriminator() G = generator() D_optim = get_optimizer(D) G_optim = get_optimizer(G) train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)