Dining(最大流)
阿新 • • 發佈:2018-11-10
Dining
http://poj.org/problem?id=3281
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 23462 | Accepted: 10371 |
Description
Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.
Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.
Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D
Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).
Input
Line 1: Three space-separated integers: N, F, and DLines 2.. N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.
Output
Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishesSample Input
4 3 3 2 2 1 2 3 1 2 2 2 3 1 2 2 2 1 3 1 2 2 1 1 3 3
Sample Output
3
Hint
One way to satisfy three cows is:Cow 1: no meal
Cow 2: Food #2, Drink #2
Cow 3: Food #1, Drink #1
Cow 4: Food #3, Drink #3
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.
建圖是關鍵。。。
把牛拆成兩個點才能起到限流的作用
源點連食物,食物連牛in,牛in連牛out,牛out連飲料,飲料連匯點
1 #include<iostream> 2 #include<cstring> 3 #include<string> 4 #include<cmath> 5 #include<cstdio> 6 #include<algorithm> 7 #include<queue> 8 #include<vector> 9 #include<set> 10 #define maxn 100005 11 #define MAXN 100005 12 #define mem(a,b) memset(a,b,sizeof(a)) 13 const int N=200005; 14 const int M=200005; 15 const int INF=0x3f3f3f3f; 16 using namespace std; 17 int n; 18 struct Edge{ 19 int v,next; 20 int cap,flow; 21 }edge[MAXN*20];//注意這裡要開的夠大。。不然WA在這裡真的想罵人。。問題是還不報RE。。 22 int cur[MAXN],pre[MAXN],gap[MAXN],path[MAXN],dep[MAXN]; 23 int cnt=0;//實際儲存總邊數 24 void isap_init() 25 { 26 cnt=0; 27 memset(pre,-1,sizeof(pre)); 28 } 29 void isap_add(int u,int v,int w)//加邊 30 { 31 edge[cnt].v=v; 32 edge[cnt].cap=w; 33 edge[cnt].flow=0; 34 edge[cnt].next=pre[u]; 35 pre[u]=cnt++; 36 } 37 void add(int u,int v,int w){ 38 isap_add(u,v,w); 39 isap_add(v,u,0); 40 } 41 bool bfs(int s,int t)//其實這個bfs可以融合到下面的迭代裡,但是好像是時間要長 42 { 43 memset(dep,-1,sizeof(dep)); 44 memset(gap,0,sizeof(gap)); 45 gap[0]=1; 46 dep[t]=0; 47 queue<int>q; 48 while(!q.empty()) 49 q.pop(); 50 q.push(t);//從匯點開始反向建層次圖 51 while(!q.empty()) 52 { 53 int u=q.front(); 54 q.pop(); 55 for(int i=pre[u];i!=-1;i=edge[i].next) 56 { 57 int v=edge[i].v; 58 if(dep[v]==-1&&edge[i^1].cap>edge[i^1].flow)//注意是從匯點反向bfs,但應該判斷正向弧的餘量 59 { 60 dep[v]=dep[u]+1; 61 gap[dep[v]]++; 62 q.push(v); 63 //if(v==sp)//感覺這兩句優化加了一般沒錯,但是有的題可能會錯,所以還是註釋出來,到時候視情況而定 64 //break; 65 } 66 } 67 } 68 return dep[s]!=-1; 69 } 70 int isap(int s,int t) 71 { 72 if(!bfs(s,t)) 73 return 0; 74 memcpy(cur,pre,sizeof(pre)); 75 //for(int i=1;i<=n;i++) 76 //cout<<"cur "<<cur[i]<<endl; 77 int u=s; 78 path[u]=-1; 79 int ans=0; 80 // cout<<dep[s]<<" "<<n<<endl; 81 while(dep[s]<n)//迭代尋找增廣路 82 { 83 if(u==t) 84 { 85 int f=INF; 86 for(int i=path[u];i!=-1;i=path[edge[i^1].v])//修改找到的增廣路 87 f=min(f,edge[i].cap-edge[i].flow); 88 for(int i=path[u];i!=-1;i=path[edge[i^1].v]) 89 { 90 edge[i].flow+=f; 91 edge[i^1].flow-=f; 92 } 93 ans+=f; 94 u=s; 95 continue; 96 } 97 bool flag=false; 98 int v; 99 for(int i=cur[u];i!=-1;i=edge[i].next) 100 { 101 v=edge[i].v; 102 if(dep[v]+1==dep[u]&&edge[i].cap-edge[i].flow) 103 { 104 cur[u]=path[v]=i;//當前弧優化 105 flag=true; 106 break; 107 } 108 } 109 if(flag) 110 { 111 u=v; 112 continue; 113 } 114 int x=n; 115 if(!(--gap[dep[u]]))return ans;//gap優化 116 for(int i=pre[u];i!=-1;i=edge[i].next) 117 { 118 if(edge[i].cap-edge[i].flow&&dep[edge[i].v]<x) 119 { 120 x=dep[edge[i].v]; 121 cur[u]=i;//常數優化 122 } 123 } 124 dep[u]=x+1; 125 gap[dep[u]]++; 126 if(u!=s)//當前點沒有增廣路則後退一個點 127 u=edge[path[u]^1].v; 128 } 129 return ans; 130 } 131 132 133 int main(){ 134 int m,s,t; 135 int F,D; 136 scanf("%d %d %d",&n,&F,&D); 137 int a,b,c; 138 isap_init(); 139 int x1[105],x2[105]; 140 int f,d; 141 for(int i=1;i<=n;i++){ 142 scanf("%d %d",&f,&d); 143 for(int j=1;j<=f;j++){ 144 scanf("%d",&x1[j]); 145 add(x1[j],F+i,1); 146 } 147 for(int j=1;j<=d;j++){ 148 scanf("%d",&x2[j]); 149 for(int k=1;k<=f;k++){ 150 add(n+F+i,x2[j]+n+n+F,1); 151 } 152 } 153 } 154 for(int i=1;i<=F;i++){ 155 add(0,i,1); 156 } 157 for(int i=1;i<=n;i++){ 158 add(F+i,n+F+i,1); 159 } 160 for(int i=1;i<=D;i++){ 161 add(i+n+n+F,F+n+n+D+1,1); 162 } 163 s=0,t=F+n+n+D+1; 164 n=F+n+n+D+2; 165 printf("%d\n",isap(s,t)); 166 } 167 168 169 /* 170 2 2 2 171 2 1 1 2 1 172 1 1 1 2 173 174 2 175 */View Code