pytorch 訓練資料以及測試 全部程式碼(6) 網路
阿新 • • 發佈:2018-11-10
ResNet101和ASPP
model = ResNet(nInputChannels, Bottleneck, [3, 4, 23, 3], os, pretrained=pretrained)
nInputChannels=3,os=16,其中Bottleneck是一個網路:class Bottleneck(nn.Module)
先看Bottleneck網路:
class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, rate=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, dilation=rate, padding=rate, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) # 會改變輸入的資料,使得輸入的資料和輸出資料一樣 self.downsample = downsample self.stride = stride self.rate = rate def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out
這是一個bottleneck,輸入是x,輸出是output+residual。這兩個tensor的shape是一樣的才能允許相加,如果輸入的shape不等於輸出的shape那麼一定存在downsample,進行shape的變化。所有的卷積都不新增bias,所有的輸入經過relu函式之後都改變了數值,使得和輸出是一樣的。
這裡的卷積大小計算重申一下: [n+2p-r(k-1)+1]/s +1
再看resnet101網路,裡面有6個函式,下面就一個一個講解
class ResNet(nn.Module): def __init__(self, nInputChannels, block, layers, os=16, pretrained=False): pass def _make_layer(self, block, planes, blocks, stride=1, rate=1): pass def _make_MG_unit(self, block, planes, blocks=[1,2,4], stride=1, rate=1): pass def forward(self, input): pass def _init_weight(self): pass def _load_pretrained_model(self): pass