1. 程式人生 > >Twitter的雪花演算法生成ID---Java

Twitter的雪花演算法生成ID---Java

/**
 * Twitter_Snowflake<br>
 * SnowFlake的結構如下(每部分用-分開):<br>
 * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
 * 1位標識,由於long基本型別在Java中是帶符號的,最高位是符號位,正數是0,負數是1,所以id一般是正數,最高位是0<br>
 * 41位時間截(毫秒級),注意,41位時間截不是儲存當前時間的時間截,而是儲存時間截的差值(當前時間截 - 開始時間截)
 * 得到的值),這裡的的開始時間截,一般是我們的id生成器開始使用的時間,由我們程式來指定的(如下下面程式IdWorker類的startTime屬性)。41位的時間截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
 * 10位的資料機器位,可以部署在1024個節點,包括5位datacenterId和5位workerId<br>
 * 12位序列,毫秒內的計數,12位的計數順序號支援每個節點每毫秒(同一機器,同一時間截)產生4096個ID序號<br>
 * 加起來剛好64位,為一個Long型。<br>
 * SnowFlake的優點是,整體上按照時間自增排序,並且整個分散式系統內不會產生ID碰撞(由資料中心ID和機器ID作區分),並且效率較高,經測試,SnowFlake每秒能夠產生26萬ID左右。
 */
public class SnowflakeIdWorker {
 
    // ==============================Fields===========================================
    /** 開始時間截 (2015-01-01) */
    private final long twepoch = 1489111610226L;
 
    /** 機器id所佔的位數 */
    private final long workerIdBits = 5L;
 
    /** 資料標識id所佔的位數 */
    private final long dataCenterIdBits = 5L;
 
    /** 支援的最大機器id,結果是31 (這個移位演算法可以很快的計算出幾位二進位制數所能表示的最大十進位制數) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
 
    /** 支援的最大資料標識id,結果是31 */
    private final long maxDataCenterId = -1L ^ (-1L << dataCenterIdBits);
 
    /** 序列在id中佔的位數 */
    private final long sequenceBits = 12L;
 
    /** 機器ID向左移12位 */
    private final long workerIdShift = sequenceBits;
 
    /** 資料標識id向左移17位(12+5) */
    private final long dataCenterIdShift = sequenceBits + workerIdBits;
 
    /** 時間截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + dataCenterIdBits;
 
    /** 生成序列的掩碼,這裡為4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
 
    /** 工作機器ID(0~31) */
    private long workerId;
 
    /** 資料中心ID(0~31) */
    private long dataCenterId;
 
    /** 毫秒內序列(0~4095) */
    private long sequence = 0L;
 
    /** 上次生成ID的時間截 */
    private long lastTimestamp = -1L;
 
    //==============================Constructors=====================================
    /**
     * 建構函式
     * @param workerId 工作ID (0~31)
     * @param dataCenterId 資料中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long dataCenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("workerId can't be greater than %d or less than 0", maxWorkerId));
        }
        if (dataCenterId > maxDataCenterId || dataCenterId < 0) {
            throw new IllegalArgumentException(String.format("dataCenterId can't be greater than %d or less than 0", maxDataCenterId));
        }
        this.workerId = workerId;
        this.dataCenterId = dataCenterId;
    }
 
    // ==============================Methods==========================================
    /**
     * 獲得下一個ID (該方法是執行緒安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
 
        //如果當前時間小於上一次ID生成的時間戳,說明系統時鐘回退過這個時候應當丟擲異常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
 
        //如果是同一時間生成的,則進行毫秒內序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒內序列溢位
            if (sequence == 0) {
                //阻塞到下一個毫秒,獲得新的時間戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //時間戳改變,毫秒內序列重置
        else {
            sequence = 0L;
        }
 
        //上次生成ID的時間截
        lastTimestamp = timestamp;
 
        //移位並通過或運算拼到一起組成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (dataCenterId << dataCenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }
 
    /**
     * 阻塞到下一個毫秒,直到獲得新的時間戳
     * @param lastTimestamp 上次生成ID的時間截
     * @return 當前時間戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
 
    /**
     * 返回以毫秒為單位的當前時間
     * @return 當前時間(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }
 
    //==============================Test=============================================
    /** 測試 */
    public static void main(String[] args) {
        System.out.println(System.currentTimeMillis());
        SnowflakeIdWorker idWorker = new SnowflakeIdWorker(1, 1);
        long startTime = System.nanoTime();
        for (int i = 0; i < 50000; i++) {
            long id = idWorker.nextId();
            System.out.println(id);
        }
        System.out.println((System.nanoTime()-startTime)/1000000+"ms");
    }
}

轉載來自:https://blog.csdn.net/heshi111/article/details/80521919